#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gene Expression Changes During Insulin Resistance and „Diabesity“ in Insulin-sensitive Tissues and Possibilities of Their Regulation


Authors: J. Hošek;  M. Bartoš
Authors‘ workplace: Ústav přírodních léčiv, Farmaceutická fakulta, Veterinární a farmaceutická univerzita, Brno
Published in: Čas. Lék. čes. 2008; 147: 360-366
Category: Review Article

Overview

Type 2 diabetes mellitus (T2DM) gains considerable and pandemic proportions and becomes noticeable problem in a social and economic sphere. In spite of all effort, exact mechanism of T2DM origin has not been elucidated yet. Studying of transcriptom is one possibility how to explain pathophysiological processes in insulin-sensitive tissues. Obtained data can serve as a base for predicting of new therapeutic targets of this disease. This overall review introduces crucial genes whose level of products changes during T2DM. The article gives notice to a diet composition, which is an important environmental factor, which is able to influence a disease outbreak. Not only the role of fats, but also influence of some plant compounds, which would be able to serve as an alternative to present prophylaxis or treatment of T2DM, have been discussed.

Key words:
type 2 diabetes mellitus; transcriptom; chronic inflammation; therapeutic target.


Sources

1. http://www.leb.emro.who.int/2006%20Guideline%20diab2. pdf (online 19. 5. 2008).

2. Astrup, A., Finer, N.: Redefining type 2 diabetes: „diabesity“ or „obesity dependent diabetes mellitus“? Obes. Rev., 2000, 1, s. 57–59.

3. Brown, A. C., Olver, W. I., Donnelly, C. J. et al.: Searching QTL by gene expression: analysis of diabesity. BMC Genet., 2005, 6, s. 12.

4. Wild, S., Roglic, G., Green, A. et al.: Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes care, 2004, 27, s. 1047–1053.

5. Toye, A., Gauguier, D.: Genetics and functional genomics of type 2 diabetes mellitus. Genome Biol., 2003, 4, s. 241.

6. Fu, L., Isobe, K., Zeng, Q. et al.: ß-adrenoreceptor agonists downregulate adiponectin, but upregulate adiponectin receptor and tumor necrosis factor-β expression in adipocytes. Eur. J. Pharmacol., 2007, 569, s. 155–162.

7. Trayhurn, P., Bing, C., Wood, S.: Adipose tissue and adipokines – Energy regulation from the human perspective. J. Nutr., 2006, 136 (Suppl.), s. 1935S–1939S.

8. Shoelson, S. E., Lee, J., Goldfine, A. B.: Inflammation and insulin resistance. J. Clin. Invest., 2006, 116, s. 1793–1801.

9. Krogh-Madson, R., Plomgaard, P., Keller, C., Pedersen, B. K.: Insulin stimulates interleukin–6 and tumor necrosis factor–α gene expression in human subcutaneous adipose tissue. Am. J. Physiol. Endocrinol. Metab., 2004, 286, s. E234–E238.

10. Zou, C., Shao, J.: Role of adypocytokines in obesity-associated insulin resistance. J. Nutr. Biochem., 2008, 19, s. 277–286.

11. Starkie, R. L., Ostrowski, S. R., Jauffred, S. et al.: Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. Faseb J., 2003, 17, s. 884–886.

12. Fasshauser, M., Klein, J., Neumann, S. et al.: Hormonal Regulation of Adiponectin Gene Expression in 3T3-L1 Adipocytes. Biochem. Biophys. Res. Commun., 2002, 290, 1084–1089.

13. Lee, J. Y., Sohn, K. H., Rhee, S. H., Hwang, D.: Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem., 2001, 276, s. 16683–16689.

14. Näslund, B., Bernström, K., Lundin, A., Arner, P.: Release of small amounts of free fatty acids from human adipocytes as determined by chemiluminescence. J. Lipid Res., 1993, 34, s. 633–641.

15. Wilding, J. P. H.: The importance of free fatty acids in the development of Type 2 diabetes. Diabetic Med., 2007, 24, s. 934–945.

16. Shi, H., Kokoeva, M. V., Inouye, K. et al.: TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Invest., 2006, 116, 3015–3025.

17. Hwang, D.: Modulation of the expression of cyclooxygenase 2 by fatty acids mediated through Toll-like receptor 4-derived signaling pathways. FASEB J., 2001, 15, s. 2556–2564.

18. Hoch, M., Eberle, A. N., Peterli, R. et al.: LPS induces interleukin-6 and interleukin-8 but not tumor necrosis factor--alpha in human adipocytes. Cytokine, 2008, 41, s. 29–37.

19. Desvergne, B., Wahli, W.: Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev., 1999, 20, s. 649–688.

20. Brown, J. M., Boysen, M. S., Jensen, S. S. et al.: Isomer-specific regulation of metabolism and PPARγ signaling by CLA in human preadipocytes. J. Lipid Res., 2003, 44, s. 1287–1300.

21. Tontonoz, P., Hu, E., Graves, R. A. et al.: mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev., 1994, 8, s. 1224–1234.

22. Moller, D. E,, Berger, J. P.: Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int. J. Obes. Relat. Metab. Disord., 2003, 27 (Suppl. 3), s. S17–S21.

23. Langin, D.: Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol. Res., 2006, 53, s. 482–491.

24. Sartipy, P., Loskutoff, D. J.: Expression profiling identifies genes that continue to respond to insulin in adipocytes made insulin-resistant by treatment with tumor necrosis factor-α. J. Biol. Chem., 2003, 278, s. 52298–52306.

25. Postic, C., Dentin, R., Girard, J.: Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab., 2004, 30, s. 398–408.

26. Lochhead, P. A., Coghlan, M. P., Rice, S. Q. J., Sutherland, C.: Inhibition of GSK3 selectively reduces G6Pase and PEPCK gene expression. Diabetes, 2001, 50, s. 937–947.

27. Haber, B. A., Chin, S., Chuang, E. et al.: High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J. Clin. Invest., 1995, 95, s. 832–841.

28. Gregori, C., Guillet-Deniau, I., Girard, J. et al.: Insulin regulation of glucokinase gene expression: evidence against a role for sterol regulatory element binding protein 1 in primary hepatocytes. FEBS Lett., 2006, 580, s. 410–414.

29. O’Doherty, R. M., Lehman, D. L., Télémaque-Potts, S., Newgard, C. B.: Metabolic impact of glucokinase overexpression in liver: lowering of blood glucose in fed rats is accompanied by hyperlipidemia. Diabetes, 1999, 48, s. 2022–2027.

30. Grimsby, J., Sarabu, R., Corbett, W. L. et al.: Allosteric activators of glucokinase: potential role in diabetes therapy. Science, 2003, 301, s. 370–373.

31. Stoeckman, A. K., Towle, H. C.: The role of SREBP-1c in nutritional regulation of lipogenic enzyme gene expression. J. Biol. Chem., 2002, 277, s. 27029–27035.

32. Queshi, K., Abrahams, G. A.: Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J. Gastroenterol., 2007, 13, s. 3540–3553.

33. Patsouris, D., Reddy, J. K., Müller, M., Kersten, S.: Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology, 2006, 147, s. 1508–1516.

34. Tamura, K., Ono, A., Miyagishima, T. et al.: Profiling of gene expression in rat liver and rat primary cultured hepatocytes treated with peroxisome proliferators. J. Toxicol. Sci., 2006, 31, s. 471–490.

35. Svegliati-Baroni, G., Candelaresi, C., Saccomanno, S. et al.: A Model of Insulin Resistance and Nonalcoholic Steatohepatitis in Rats: Role of Peroxisome Proliferator-Activated Receptor-α and n-3 Polyunsaturated Fatty Acid Treatment on Liver Injury. Am. J. Pathol., 2006, 169, s. 846–860.

36. Sasaki, M., Ikeda, H., Ohira, S. et al.: Expression of trefoil factor family 1, 2, and 3 peptide is augmented in hepatolithiasis. Peptides, 2004, 25, s. 763–770.

37. Zorzano, A., Palacín, M., Gumą, A.: Mechanisms regulating GLUT4 glucose transporter expressio and glucose transport in skeletal muscle. Acta Physiol. Scand., 2005, 183, s. 43–58.

38. Rome, S., Clément, K., Rabasa-Lhoret, R. et al.: Microarray profiling of human skeletal muscle reveals that insulin regulates ~800 genes during a hyperinsulinemic clamp. J. Biol. Chem., 2003, 278, s. 18063–18068.

39. Sandström, M. E., Zhang, S. J., Bruton, J. et al.: Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J. Physiol., 2006, 575, s. 251–262.

40. Bruce, C. R., Carey, A. L., Hawley, J. A., Febbraio, M. A.: Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes, 2003, 52, s. 2338–2345.

41. Hawley, J. A.: Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab. Res. Rev., 2004, 20, s. 383–393.

42. Göransson, O., McBride, A., Hawley, S. A. et al.: Mechanism of action of A–769662, a valuable tool for activation of AMP-activated protein kinase. J. Biol. Chem., 2007, 282, s. 32549–32560.

43. Haag, M., Dippenaar, N. G.: Dietary fats, fatty acids and insulin resistance: short review of a multifaceted connection. Med. Sci. Monit., 2005, 11, s. RA359–RA367.

44. Wilding, J. P. H.: The importance of free fatty acids in the development of Type 2 diabetes. Diabet. Med., 2007, 24, s. 934–945.

45. Cao, H., Hininger-Favier, I., Kelly, M. A. et al.: Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J. Agric. Food Chem., 2007, 55, s. 6372–6378.

46. Cao, H., Kelly, M. A., Kari, F. et al.: Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats. J. Inflamm. (Lond.), 2007, 4, s. 1.

47. Kang, J. H., Kim, C. S., Han, I. S. et al.: Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett., 2007, 581, s. 4389–4396.

48. Yu, R., Kim, C. S., Kwon, B. S., Kawada, T.: Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring), 2006, 14, s. 1353–1362.

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#