#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

PCSK9 inhibitors and diabetes mellitus


Authors: Branislav Vohnout 1,2,3;  Jana Lisičanová 3;  Andrea Havranová 4
Authors‘ workplace: Ústav výživy, FO a ZOŠ a Koordinačné centrum pre familiárne hyperlipoproteinémie, Slovenská zdravotnícka univerzita v Bratislave, Slovenská republika 1;  Ústav epidemiológie LF UK v Bratislave, Slovenská republika 2;  Diabetologická ambulancia Diabeda s. r. o., Bratislava, Slovenská republika 3;  Ústav klinického a translačného výskumu, Biomedicínske centrum Slovenskej akadémie vied, Bratislava, Slovenská republika 4
Published in: Vnitř Lék 2018; 64(12): 1186-1189
Category:

Overview

Proproteinconvertase subtilisin kexin 9 (PCSK9) is a key regulator of low-density lipoprotein receptor (LDLR) expression. Anti-PCSK9 monoclonal antibody (MAb) therapy reduces LDL-cholesterol (LDL-C) by ~60 % and reduces also the risk of major adverse cardiovascular events. Mendelian randomisation studies showed that patients carrying loss-of-function PCSK9 genetic variants display lower LDL-C and have an increased risk of developing type 2 diabetes (T2DM). Randomized controlled trials with anti-PCSK9 MAbs however showed no effect on the risk. A possible explanation of the discrepancy is that the deficiency of locally but not circulating PCSK9 is responsible for increased LDLR expression in pancreatic islets, which results in cholesterol accumulation and B-cell dysfunction. Thus PCSK9 lowering therapy with MAb targeting mainly circulating PCSK9 might have a limited impact on LDLR expression in pancreatic cells and on the risk of T2DM. Long-term clinical trials are however needed to confirm it.

Key words:

diabetes mellitus – LDL receptor – PCSK9


Sources
  1. Ference BA, Ginsberg HN, Graham I et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017; 38(32): 2459–2472. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehx144>.
  2. Vohnout B, Havranová A. LDL-cholesterol – hlavný rizikový faktor aterosklerózy. AtheroRev 2016; 1(2)2: 88–92.
  3. Baigent C, Blackwell L, Emberson J et al. Cholesterol Treatment Trialists’ (CTT) Collaboration, Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010; 376(9753): 1670–1681. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(10)61350–5>.
  4. Cannon CP, Blazing MA, Giugliano RP et al. IMPROVE-IT Investigators. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med 2015; 372(25): 2387–2397. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1410489>.
  5. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol 2014; 25(5): 387–393. Dostupné z DOI: <http://dx.doi.org/10.1097/MOL.0000000000000114>.
  6. Cohen JC, Boerwinkle E, Mosley TH Jr et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354(12): 1264–1272. <http://dx.doi.org/10.1056/NEJMoa054013>.
  7. Abifadel M, Varret M, Rabès JP et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34(2): 154–156. Dostupné z DOI: <http://dx.doi.org/10.1038/ng1161>.
  8. Schwartz GG, Steg PG, Szarek M et al. [ODYSSEY OUTCOMES Committees and Investigators]. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med 2018. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1801174>.
  9. Sabatine MS, Giugliano RP, Keech AC et al. [FOURIER Steering Committee and Investigators]. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017; 376(18): 1713–1722. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1615664>.
  10. Ridker PM, Revkin J, Amarenco P et al. [SPIRE Cardiovascular Outcome Investigators]. Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients. N Engl J Med 2017; 376(16): 1527–1539. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1701488>.
  11. Sattar N, Preiss D, Murray HM et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 2010; 375(9716): 735–742. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(09)61965–6>.
  12. Preiss D, Seshasai SR, Welsh P et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 2011; 305(24): 2556–2564. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2011.860>.
  13. Swerdlow DI, Preiss D, Kuchenbaecker KB et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 2015; 385(9965): 351–361. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(14)61183–1>.
  14. White J, Swerdlow DI, Preiss D et al. Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes. JAMA Cardiol 2016; 1(6): 692–699. Dostupné z DOI: <http://dx.doi.org/10.1001/jamacardio.2016.1884>.
  15. Fall T, Xie W, Poon W et al. Using Genetic Variants to Assess the Relationship Between Circulating Lipids and Type 2 Diabetes. Diabetes 2015; 64(7): 2676–2684. Dostupné z DOI: <http://dx.doi.org/10.2337/db14–1710>.
  16. Ference BA, Robinson JG, Brook RD et al. Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease and Diabetes. N Engl J Med 2016; 375(22): 2144–2153. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1604304>.
  17. Besseling J, Kastelein JJ, Defesche JC et al. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 2015; 313(10): 1029–1036. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2015.1206>.
  18. Filippatos TD, Panagiotopoulou T, Tzavella E et al. Hypolipidemic Drugs and Diabetes Mellitus-Mechanisms and Data From Genetic Trials. J Cardiovasc Pharmacol Ther 2018; 23(3): 187–191. Dostupné z DOI: <http://dx.doi.org/10.1177/1074248418757011>.
  19. Schmidt AF, Swerdlow DI, Holmes MV et al. PCSK9 genetic variants and risk of type 2 diabetes: A mendelian randomisation study. Lancet Diabetes Endocrinol 2017; 5(2): 97–105. Dostupné z DOI: <http://dx.doi.org/10.1016/S2213–8587(16)30396–5>.
  20. Lotta LA, Sharp SJ, Burgess S et al. Association between low-density lipoprotein cholesterollowering genetic variants and risk of type 2 diabetes: A meta-analysis. JAMA 2016; 316(13): 1383–1391. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2016.14568>.
  21. Karatasakis A, Danek BA, Karacsonyi J et al. Effect of PCSK9 Inhibitors on Clinical Outcomes in Patients With Hypercholesterolemia: A Meta-Analysis of 35 Randomized Controlled Trials. J Am Heart Assoc 2017; 6(12). pii: e006910. Dostupné z DOI: <http://dx.doi.org/10.1161/JAHA.117.006910>.
  22. Colhoun HM, Ginsberg HN, Robinson JG et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY Phase 3 studies. Eur Heart J 2016; 37(39): 2981–2989. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehw292>.
  23. de Carvalho LSF, Campos AM, Sposito AC. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors and Incident Type 2 Diabetes: A Systematic Review and Meta-analysis With Over 96,000 Patient-Years. Diabetes Care 2018; 41(2): 364–367. Dostupné z DOI: <http://dx.doi.org/10.2337/dc17–1464>.
  24. Leiter LA, Müller-Wieland D, Baccara-Dinet MT et al. Efficacy and safety of alirocumab in people with prediabetes vs those with normoglycaemia at baseline: a pooled analysis of 10 phase III ODYSSEY clinical trials. Diabet Med 2018; 35(1): 121–130. Dostupné z DOI: <http://dx.doi.org/10.1111/dme.13450>.
  25. Norata GD, Tavori H, Pirillo A et al. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res 2016; 112(1): 429–442. Dostupné z DOI: <http://dx.doi.org/10.1093/cvr/cvw194>.
  26. Hao M, Head WS, Gunawardana SC et al. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007; 56(9): 2328–2338. Dostupné z DOI: <http://dx.doi.org/10.2337/db07–0056>.
  27. Cnop M, Hannaert J, Grupping A et al. Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modification. Endocrinology 2002; 143(9): 3449–3453. Dostupné z DOI: <http://dx.doi.org/10.1210/en.2002–220273>.
  28. Paul R, Choudhury A, Choudhury S et al. Cholesterol in pancreatic beta-cell death and dysfunction: underlying mechanisms and pathological implications. Pancreas 2016; 45(3): 317–324. Dostupné z DOI: <http://dx.doi.org/10.1097/MPA.0000000000000486>.
  29. Da Dalt L, Ruscica M, Bonacina F et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J 2018. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehy357>.
Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#