#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Changes to calcium-phosphate metabolism associated with chronic nephropathies


Authors: J. Blahoš 1;  I. Sotorník 1,2
Authors‘ workplace: Oddělení klinické endokrinologie a osteocentrum Ústřední vojenské nemocnice Praha, vedoucí prof. MUDr. Jaroslav Blahoš, DrSc. 1;  Osteologická ambulance Synlab Czech, Praha, vedoucí lékařka MUDr. Kateřina Kotrčová, Ph. D. 2
Published in: Vnitř Lék 2012; 58(7 a 8): 12-18
Category: 80th Birthday MUDr. Miroslav Mydlík, DrSc.

Overview

The paper discusses bone mineral and bone disorders associated with chronic nephropathies that are a logical consequence of reduced renal function. These are principally driven by changes in parathormone production and vitamin D synthesis. Bones are usually affected by renal osteopathy – osteodystrophy with abnormities of bone turnover, mineralization and volume, and with growth retardation in children. Extra-skeletal calcifications may occur, of which vascular wall localization is the most serious. A collection of pathologies develops, now termed chronic kidney disease – mineral and bone disorder (CKD-MBD).

Key words:
bone minerals – chronic nephropathy – parathormone – vitamin D – skeletal changes – calcification


Sources

1. Kidney Disease: KDIGO clinical practice guidelines for the diagnosis, evaluation, presentation and treatment of chronic kidney disease – mineral bone disorder (CKD-MBD). Kidney Int 2009; 76: 1–130.

2. Levey AS, Atkins R, Coresh J et al. Chronic kidney disease as a global public health problem: approaches and initiations – a position statement from Kidney Disease: Improving Global Outcomes. Kidney Int 2007; 72: 247–259.

3. Moorthi R, Moe SM. CKD – Mineral and bone disorder: Core curriculum 2011. Am J Kidney Dis 2011; 58: 1022–1036.

4. Liu SH, Gupta A, Quarles LD. Emerging role of fibroblast growth factor 23 in bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Cur Opin Nephrol Hypertens 2007; 16: 329–335.

5. John GB, Cheng CY, Kuro-o M. Role of klotho in aging, phosphate metabolism, and CKD. Am J Kidney Dis 2011; 58: 127–134.

6. Kobama H, Fukagawa M. FGF-23-parathyroid interaction: implications in chronic kidney disease. Kidney Int 2010; 77: 292–298.

7. Prié D, Beck L, Ureña P et al. Recent findings in phosphate homeostasis. Curr Opin Nephrol Hypertens 2005; 13: 675–681.

8. Nakanishi S, Kazama JJ, Nii-Kono T et al. Serum fibroblast growth factor 23 levels predict the future refractory hyperparathyroidism in dia­lysis patients. Kidney Int 2005; 67: 1171–1178.

9. Galitzer H, Ben-Dov IZ, Silver J et al. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 2010; 77: 200–218.

10. Gutiérrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359: 584–592.

11. Gutiérrez OM, Januzzi JL, Isakova T et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009; 119: 546–551.

12. Yilmaz MI, Sinmez A, Saglan M et al. FGF-23 and vascular dysfunction in patients with stage 3 and 4 of chronic kidney disease. Kidney Int 2010; 78: 679–685.

13. Sato T, Tominaga Y, Ueki T et al. Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am J Kidney Dis 2004; 44: 481–487.

14. Evenepoel P, Naesens M, Claes K et al. Tertiary hyperphosphatonism accentuates hypophosphatemia and suppreses calcitriol levels in renal transplant recipients. Am J Transplant 2007; 7: 1193–1200.

15. Kuro-o M, Matsumara Y, Aizawa H et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390: 49–51.

16. Chang Q, Hoeps S, van der Kemp AW et al. The β-glucuronidase hydroxylyzes and activates the TRPV5 channel. Science 2005; 310: 490–493.

17. Kurosu M, Yamamoto M, Clark JD et al. Suppression of aging in mice by the hormone klotho. Science 2005; 309: 1829–1833.

18. Blahoš J. Stárnutí kosti a význam osteocytů. Osteol Bull 2011; 16: 1–3.

19. Haruna Y, Kashihara N, Satoh M et al. Amelioration of progressive renal injury by genetic manipulation of klotho gene. Proc Natl Acad Sci USA 2007; 104: 2331–2336.

20. Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 2011; 22: 124–126.

21. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest 2006; 116: 1202–1208.

22. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone 2005; 37: 148–158.

23. van Bezooijen RL, Svensson JP, Eefting D et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-sti­mulated bone formation. J Bone Miner Res 2007; 22: 19–28.

24. Sotorník R. Mechanismy vlivu glukokortikoidů na skelet. In: Sotorník I, Kutílek Š (eds). Kostní minerály a skelet při chronickém onemocnění ledvin. Praha: Galén 2011: 230–281.

25. Bellido T, Ali AA, Gubrij I et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoclastogenesis. Endocrinology 2005; 146: 4577–4583.

26. Cejka D, Herberth J, Branscum AJ et al. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 2011; 6: 877–882.

27. Gaudio A, Pennisi P, Bratengeier C et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization – induced bone loss. J Clin Endocrinol Metab 2010; 95: 2248–2253.

28. Cirmanová V, Stárka L. Sklerostin – nový regulační marker kostního obratu a klíčový cíl v terapii osteoporózy. Osteol Bull 2011; 16: 16–19.

29. Mirza FS, Padhi ID, Raisz LG et al. Serum sclerostin levels negatively corelate with parathyroid hormone levels and free estrogen index in postmenopausla women. J Clin Endocrinol Metab 2010; 95: 1991–1997.

30. Cejka D, Jäger-Lansky A, Kieweg H et al. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol Dial Transplant 2012; 27: 226–230.

31. Dusilová Sulková S. Sklerostin a jeho význam v kontextu renální osteopatie. Postgradualní nefrol 2011; IX: 79–80.

32. Gooi JH, Pompolo S, Karsdal MA et al. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone 2010; 46: 1486–1497.

33. Zikán V. Význam parathormonu, kalcitoninu a sklerostinu v regulaci kostní remodelace. Osteol Bull 2010; 15: 48–50.

34. Chan A, van Bezooijen RL, Löwik CW. A new paradigm in the treatment of osteoporosis: Wnt pathway proteins and their antagonists. Curr Opin Invest Drugs 2007; 8: 293–298.

35. Sotorník I, Karasová L, Kautznerová D et al. Vyšetřovací postupy. In: Sotorník I, Kutílek Š et al (eds). Kostní minerály a skelet při chronickém onemocnění ledvin. Praha: Galén 2011: 107–155.

36. Chowdhury UK, Airan B, Mishra TK et al. Histopathology and morphometry of radial artery conduits: basic study and clinical application. Ann Thorac Surg 2004; 78: 1614–1621.

37. Raggi P, Boulay A, Chasa-Taber S et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 2002; 39: 695–701.

38. Amann K. Medial calcification and intima calcification are distinct entities in chronic kidney disease. J Am Soc Nephrol 2008; 3: 1599–1605.

39. Nolan CR, Qunibi WY. Calcium salts in the treatment of hyperphosphatemia in hemodialysis patients. Curr Opin Nephrol Hypertens 2003; 12: 373–379.

40. Giachelli CM. Vascular calcification mechanism. J Am Soc Nephrol 2004; 15: 2959–2964.

41. Lomashvili KA, Garg P, O’Neill WC. Chemical and hormonal determinants of vascular calcification in vitro. Kidney Int 2006; 69: 1464–1470.

42. Block GA, Raggi P, Bellaso A et al. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 2007; 71: 438–441.

43. O’Neill WC, Wang X, Faugere MS et al. Effect of calcitriol on vascular calcification and uremic osteodystrophy. J Am Soc Nephrol 2009; 20: 37A.

44. Wolf M, Shah A, Gutiérrez O et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int 2007; 72: 1004–1013.

45. O’Neill WC, Lomashvili KA. Recent progress in the treatment of vascular calcification. Kidney Int 2010; 78: 1232–1239.

46. London GM, Guerin AP, Marchais SJ et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant 2003; 18: 1731–1740.

47. Block GA, Klassen PS, Lazarus JM et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004; 15: 2208–2218.

48. Moorthi RN, Moe SM. CKD – Mineral and Bone Disorder: Core curriculum 2011. Am J Kidney Dis 2011; 58: 1022–1036.

49. Bolland MV, Avenell A, Baron JA et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. Brit Med J 2010; 341: c3691.

50. Reid IR, Bolland MJ, Avenell A et al. Cardio­vascular effects of calcium supplementation. Osteoporosis Int 2011; 22: 1649–1658.

51. Elder GJ. Calcium supplementation: lessons from the general population for chronic kidney disease and back. Curr Opin Nephrol Hypertens 2011; 20: 369–375.

52. Salusky IB. A new era in phosphate binder therapy: What are the options? Kidney Int 2006; 70: 10–15.

53. Navaneethan SD, Palmer SC, Craig JC et al. Benefits and harms of phosphate binders in CKD: A systematic review of randomized controlled trials. Am J Kidney Dis 2009; 54: 619–637.

54. Block GA, Spiegel DM, Ehrich J et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to dialysis. Kidney Int 2005; 68: 1815–1824.

55. Braulin W, Zhorov E, Guo A et al. Bile acid binding to sevelamer HCl. Kidney Int 2002; 62: 611–619.

56. Garg JP, Chasan-Taber S, Blair A et al. Effect of sevelamer and calcium-based phosphate binders on uric acid concentration in patients undergoing hemodialysis: a randomized clinical trial. Arthritis Rheum 2005; 52: 290–295.

57. Neri L, Rocca Rey LA, Lentine KL et al. Joint association of hyperuricemia and reduced GFR on cardiovascular morbidity: A historical cohort study based on laboratory and claims data from a National Insurance Provider. Am J Kidney Dis 2011; 58: 398–408.

58. Suki WA, Zabaneh R, Cangiano JL et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int 2007; 72: 1130–1137.

59. Goto S, Fujii H, Kim JI et al. Homocysteine and folic acid levels in hemodialysis patients treatment with sevelamer hydrochloride. Clin Nephrol 2010; 73: 420–425.

60. DeBroe ME, D’Haase PC. Improving outcomes in hyperphosphatemia. Nephrol Dial Transplant 2004; 19 (Suppl 1): 14–18.

61. Spiegel DM, Farmer B, Smits G et al. Magnesium carbonate is an effective phosphate binder for chronic hemodialysis patients: a pilot study. J Renal Nutrition 2007; 17: 416–422.

62. Geisser P, Philipp E. PA21: a novel phosphate binder for the treatment of hyperphosphatemia in chronic kidney disease. Clin Nephrol 2010; 74: 4–11.

63. Maccubin D, Tipping D, Kuznetsova O et al. Hypophosphatemic effect of niacin in patients without renal failure: a randomized trial. Clin J Am Soc Nephrol 2010; 5: 528–529.

64. Holick MF. Vitamin D deficiency. N Engl Med J 2007; 357: 266–281.

65. Kennel KA, Drake MT, Horley DL. Vitamin D deficiency in adults: When to test and how to treat. Mayo Clin Proc 2010; 85: 752–758.

66. Gal-Moscovici A, Sprague SM. Use of vitamin D in chronic kidney disease patients. Kidney Int 2010; 78: 146–151.

67. Pilz S, Iodice S, Zittermann A et al. Vitamin D status and mortality risk in CKD: A meta analysis of prospective studies. Am J Kidney Dis 2011; 58: 374–382.

68. Navaneethan SD, Schold JD, Arrigain S et al. Low 25-hydroxyvitamin D levels and mortality in non-dialysis-dependent CKD. Am J Kidney Dis 2011; 58: 536–543.

69. Matias PJ, Jorge C, Ferreira C et al. Cholecalciferol supplementation in hemodialysis pa­tients: Effects on mineral metabolism, inflammation, and cardiac dimension parameters. Clin J Am Soc Nephrol 2010; 5: 905–911.

70. Kovesdy CP, Lu JL, Malkauskas SM et al. Paricalcitol versus ergocalciferol for secondary hyperparathyroidism in CKD stages 3 and 4: A randomized controlled trial. Am J Kidney Dis 2012; 59: 58–66.

71. Li YC, Kong J, Wei M et al. 1,25-dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002; 110: 229–238.

72. Sun J, Kong J, Duan Y et al. Increased NF-(kappa)B activity in fibroblasts lacking the vitamin D receptor. Am J Physiol Endocrinol Metab 2006; 291: E315–E322.

73. Li YC. Renoprotective effects of vitamin D analogs. Kidney Int 2010; 78: 134–139.

74. Kuhlmann A, Haas CS, Gross ML et al. 1,25-dihydroxyvitamin D3 decreases podocyte loss and podocyte hypertrophy in the subtotally nephrectomied rat. Am J Physiol Renal Physiol 2004; 286: F526–F533.

75. Tan X, Li Y, Liu Y. Paricalcitol alternates renal interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 2006; 17: 3382–3393.

76. Agarwal R, Acharya M, Tian J et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int 2005; 68: 2823–2828.

77. Teng M, Wolf M, Ofsthun MN et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol 2005; 16: 1115–1125.

78. Zhang Z, Zhang Y, Ming G et al. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: blockade of compensatory renin increase. Proc Natl Acad Soc USA 2008; 105: 15896–15901.

79. Fishbane S, Chittineni H, Packman M et al. Oral paricalcitol in the treatment of patients with CKD and proteinuria: a randomized trial. Am J Kidney Dis 2009; 54: 647–652.

80. Lambers Meerspink HJ, Agarwal R, Cuyne DW et al. The selective vitamin D receptor activator for albuminuria lowering (VITAL) study: design an baseline characteristics. Am J Nephrol 2009; 30: 280–286.

81. de Zeeuw D, Agarwal R, Amdahl M et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomized controlled trial. Lancet 2010; 376: 1543–1551.

82. Sotorník I. Terapie renální osteopatie. In: Sotorník I, Kutílek Š (eds). Kostní minerály a skelet při chronickém onemocnění ledvin. Praha: Galén 2011: 173–223.

83. Frazāo JM, Messa P, Mellotte GJ et al. Cinacalcet reduces plasma intact parathyroid hormone, serum phosphate and calcium levels in patients with secondary hyperparathyroidism irrespective of its severity. Clin Nephrol 2011; 76: 233–243.

84. Toussaint ND. Extracellular matrix calcification in chronic kidney disease. Curr Opin Nephrol Hypertens 2011; 20: 360–368.

85. Toussaint ND, Elder GJ, Kerr PG. Bisphosphonates in chronic kidney disease; balancing potential benefits and adverse effects on bone and soft tissue. Clin J Am Soc Nephrol 2009; 4: 221–233.

86. Pasch A, Schaffner T, Huynh-Do U et al. Sodium thiosulphate prevents vascular calcification in uremic rats. Kidney Int 2008; 74: 1444–1453.

87. Yatzidis H, Agroyanis B. Sodium thiosulphate treatment of soft tissue calcifications in pa­tients with end-stage renal disease. Perit Dial Bull 1987; 7: 250–252.

88. Mendoza FJ, Lopez I, Montes de Oga A et al. Metabolic acidosis inhibits soft tisssue calcification in uremic rats. Kidney Int 2008; 73: 407–414.

89. Cai Y, Xu MJ, Teng X et al. Intermedin inhibits vascular calcification by increasing the level of matrix gama-carboxy-glutamic acid proteins. Cardiovasc Res 2010; 85: 864–873.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 7 a 8

2012 Issue 7 a 8

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#