#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Will vitamin D become a new antidiabetic?


Authors: K. Vondra 1;  O. Topolčan 2;  D. Janíčková-Ždárská 3
Authors‘ workplace: Endokrinologický ústav Praha, ředitelka RNDr. Běla Bendlová, CSc. 1;  II. interní klinika Lékařské fakulty UK a FN Plzeň, přednosta prof. MUDr. Jan Filipovský, CSc. 2;  Interní klinika 2. lékařské fakulty UK a FN Motol Praha, přednosta prof. MUDr. Milan Kvapil, CSc., MBA 3
Published in: Vnitř Lék 2012; 58(5): 411-416
Category: Appendix: Vitamin D

Overview

Based on experience from experimental and human studies, vitamin D can be considered an important factor lowering the risk of diabetes mellitus type 1 and 2. The mechanism consists in the direct influence of vitamin D via nuclear receptors on genes coding proteins associated with normal function of B cells of Langerhans islands and genes coding proteins ensuring normal function of the immune system. There is also an indirect influence via regulation of homeostasis of calcium. Clinical observation and cross-sectional studies show an inverse relationship between vitamin D deficiency and appearance of diabetes mellitus type 2. A major deficit of vitamin D in diabetes mellitus type 2 appears to be an independent factor able to predict an increased risk of future cardiovascular mortality. Deficiency in early periods of life was shown to precede autoimmune diabetes mellitus type 1 in an experiment as well as in humans. Prevention of vitamin D deficiency in early as well as later periods of life is a basic pre-requisites of successful preventive measures against diabetes mellitus type 1. Explicit evidence for the significance of the correction of vitamin D deficiency for improvement of metabolic control in diabetics is still missing mainly due to a low number of intervention, placebo-controlled and randomized trials. On the other side, intervention studies often showed positive influence on the conditions accompanying diabetes, such as systolic hypertension or endothelial dysfunction. Unlike in diabetics, the intervention trials showed positive results in non-diabetics with high risk of type 2 diabetes and impaired fasting glycaemia or insulin resistance. One can conclude that existing knowledge already indicate that maintaining the level of 25-hydroxyvita­-min D > 30 ng/ml during the year without seasonal variations will be have multiple real as well as potential health benefits. A great pro­mise for clinical practice are the structural analogs of vitamin D tested experimentally, which maintain the influence on the immune system, effect of insulin and B cells function, but have suppressed influence on bone and calcium metabolism.

Key words:
vitamin D deficiency – diabetes mellitus type 2 – diabetes mellitus type 1 – 25-hydroxyvitamin D


Sources

1. Wild S, Roglic G, Green A et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047–1053.

2. Hu FB, Manson JE, Stampfer MJ et al. Diet, lifestyle and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001; 345: 790–797.

3. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–281.

4. Liang WW. Seasonal changes in preprandial glucose, HbA1c, and blood pressure in diabetic patients. Diabetes Care 2007; 30: 250–252.

5. Forouhi NG, Luan J, Cooper A et al. Baseline serum 25-hydroxyvitamin D is predictive of future glycemic status and insulin resistence: the Medical Research Council Ely Prospective Study 1990–2000. Diabetes 2008; 57: 2619–2625.

6. Grimnes G, Emaus N, Joakimsen RM et al. Baseline serum 25-hydroxyvitamin D concentrations in the Tromso Study 1994–95 and risk of developing type 2 diabetes during 11 years of follow-up. Diabet Med 2010; 27: 1107–1115.

7. Kayaniil S, Vieth R, Retnakaran R et al. Association of vitamin D with insulin resistence and beta-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care 2010; 33: 1379–1381.

8. Pittas AG, Lau J, Hu FB et al. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007; 92: 2017–2029.

9. Parker J, Hashmi O, Dutton D et al. Levels of vitamin D and cardiometabolic disorders. Systematic review and meta-analysis. Maturitas 2010; 65: 225–236.

10. Brock KE, Huang WY, Fraser DR et al. Diabetes prevalence is associated with serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in US middle-aged Caucasian men and women: a cross-sectional analysis within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Br J Nutr 2011; 106: 339–344.

11. Knekt P, Laaksonen M, Mattila C et al. Serum vitamin D and subsequent occurence of type 2 diabetes. Epidemiology 2008; 19: 666–671.

12. Scragg R, Sowers M, Bell C. Third National Health and Nutrition Examination Survey. Serum 25-hydroxyvitamin D, diabetes and ethnicity in the third national health and nutrition examination survey. Diabetes Care 2004; 27: 2813–2818.

13. Scragg R, Holdaway I, Singh V et al. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res Clin Pract 1995; 27: 181–188.

14. Pittas AG, Dawson-Hughes B, Li T et al. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care 2006; 29: 650–656.

15. Lau SL, Gunton JE, Athayde NP et al. Serum 25-hydroxyvitamin and glycated hemoglobin levels in women with gestational diabetes mellitus. Med J Aust 2011; 194: 334–337.

16. Ginde AA, Scragg R, Schwarz RS et al. Prospective study of 25-hydroxyvitamin D level, cardiovascular disease mortality, and all-cause mortality in older U.S. adults. J Am Geriatr Soc 2009; 57: 1595–1603.

17. Joergensen CH, Gall MA, Schmedes A et al. Vitamin D levels and mortality in type 2 diabetes. Diabetes Care 2010; 33: 2238–2243.

18. Pittas AG, Chung M, Trikalinos T et al. Vitamin D and cardiometabolic outcomes. Ann Intern Med 2010; 152: 307–314.

19. Pittas AG, Dawson-Hughes B. Vitamin D and diabetes. J Steroid Biochem Mol Biol 2010; 121: 425–429.

20. Cavalier E, Delanaye P, Souberbielle JC et al. Vitamin D and type 2 diabetes mellitus: Where do we stand? Diabetes Metab 2011 Feb 21. Epub ahead of print.

21. Pittas AG, Hartus SS, Stark PC et al. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 2007; 30: 980–986.

22. Avenell A, Cook JA, MacLennan GS et al. RECORD trial group. Vitamin D supplementation and type 2 diabetes: a substudy of a randomised placebo-controlled trial in older people (RECORD trial ISRCTN 51647438). Age Ageing 2009; 38: 606–609.

23. Jorde R, Figenschau Y. Supplementation with cholecalciferol does not improve glycaemic control in diabetic subjects with normal serum 25-hydroxyvitamin D levels. Eur J Nutr 2009; 48: 349–354.

24. Sugden JA, Davies JI, Witham MD et al. Vitamin D improves endothelial function in patients with type 2 diabetes and low vitamin D levels. Diabet Med 2008; 25: 320–325.

25. Von Hurst PR, Stonehouse W, Coad J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient – a randomised, placebo-controlled trial. Br J Nutr 2010; 103: 549–555.

26. Nagpal J, Pande JN, Bhartia A. A double--blind, randomized, placebo-controlled trial of the short-term effect of vitamin D 3 supplementation on insulin sensitivity in apparently healthy, middle-aged, centrally obese men. Diabet Med 2009; 26: 19–27.

27. Mitri J, Dawson-Hughes B, Hu FB et al. Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycaemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr 2011; 94: 486–494.

28. Taylor AV, Wise PH. Vitamin D replacement in Asians with diabetes may increase insulin resistance. Postgrad Med J 1998; 74: 365–366.

29. Sanders KM, Stuart AL, Williamson EJ et al. Annual high-dose oral vitamin D and falls and fractures in older-women: a randomized controlled trial. JAMA 2010; 303: 2357.

30. Hyppönen E. Vitamin D and increasing incidence of type 1 diabetes-evidence for an association? Diabetes Obes Metab 2010; 12: 737–743.

31. Mohr SB, Garland CF, Gorham ED et al. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 dia­betes in 51 regions worldwide. Diabetologia 2008; 51: 1391–1398.

32. Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes, a systematic review and meta-analysis. Arch Dis Child 2008; 93: 512–517.

33. Fronczak CM, Barón AE, Chase HP et al. In utero dietary exposures and risk of islet autoimmunity in children. Diabetes Care 2003; 26: 3237–3242.

34. Pitocco D, Crino A, Di Stasio E et al. The effect of calcitriol and nicotinamide on residual pancreatic beta-cell function in patietns with recent-onset Type 1 diabetes (IMDIAB XI). Diab Med 2006; 23: 920–923.

35. Li X, Liao L, Yan X et al. Protective effect of 1-alpha-hydroxyvitamin D3 on residual beta-cell function in patients with adult-onset latent autoimmune diabetes (LADA). Diabetes Metab Res Rev 2009; 25: 411–416.

36. Walter M, Kaupper T, Adler K et al. No effect of the 1-alpha, 25-dihydroxyvitamin D3 on beta-cell residual function and insulin requirement in adults with new-onset type 1 diabetes. Diabetes Care 2010; 33: 1443–1448.

37. Joergensen CH, Hovind P, Schmedes A et al. Vitamin D levels, microvascular complications, and mortality in Type 1 diabetes. Diabetes Care 2011; 34: 1081–1085.

38. Mathieu C, Gysemans C, Giulietti A et al. Vitamin D and diabetes. Diabetologia 2005; 48: 1247–1257.

Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#