Mycological diagnosis of pulmonary Aspergillus infections with a focus on serological methods


Authors: N. Mallátová
Authors‘ workplace: Pracoviště parazitologie a mykologie, Centrální laboratoře, Nemocnice České Budějovice, a. s.
Published in: Epidemiol. Mikrobiol. Imunol. 66, 2017, č. 4, s. 174-181
Category: Review Article

Overview

Aspergillus are ubiquitous fungi that can cause serious illnesses in susceptible individuals. The most commonly infected organ is the lungs. The severity of the disease depends on the degree of the invasion of the lung tissue by fungi, which rises proportionally with the development of immunodeficiency. The only way to clearly determine the degree to which the lungs have been invaded is to carry out a histological examination of a sample of the infected tissue. Conventional mycological methods can detect the presence of the fungus in samples from a patient's airways by using microscopy or culture techniques. Furthermore, it is possible to determine the presence of the specific Aspergillus antigen, galactomannan, and of non-specific beta-D-glucan in the serum or bronchoalveolar lavage fluid. The detection of antibodies against Aspergillus is only relevant for chronic forms of the disease.

This article discusses the benefits of different mycological examination methods in the diagnosis of various forms of pulmonary aspergillosis.

Keywords:
pulmonary aspergillosis – microscopic examination – culture methods – galactomannan – beta-D-glucan – lateral flow device


Sources

1. Samson RA, Hong SB, Frisvald JC. Old and new concepts of species differentiation in Aspergillus. Medical Mycology, 2006;44(Suppl.1): 127–131.

2. Sugui JA, Peterson SW, Figat A, et al. Genetic relatedness versus biological compatibility between Aspergillus fumigatus and related species. J Clin Microbiol, 2014;52(10): 3707–3721.

3. Hubka V, Kubatova A, Mallatova N, et al. Rare and new etiological agents revealed among178 clinical Aspergillus strains obtained from Czech patients and characterized by molecular sequencing. Med Mycol, 2012;50(6): 601–610.

4. Haber J, Vašáková M, Mallátová N, et al. Plicní aspergilové syndromy – diagnostika a léčba, doporučené postupy odborných společností. Stud Pneumol Phthiseol, 2016;76(3): 82–88.

5. Mennink-Kersten MA, Donnelly JP, Verweij PE. Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. Lancet Infect Dis, 2004;46(4): 349–357.

6. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis, 2008;46(12): 1813–1821.

7. Blot SI, Taccone FS, Van den Abeele AM, et al. A clinical algorithm to diagnose invasive pulmonary aspergillosis in critically ill patients. Am J Respir Crit Care Med, 2012;186(1): 56–64.

8. Denning DW, Cadranel J, Beigelman-Aubry C, et al. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J, 2016;47(1): 45–46.

9. Arendrup MC, Bille J, Dannaoui E, et al. ECIL-3 classical diagnostic procedures for the diagnosis of invasive fungal diseases in patients with leukaemia. Bone Marrow Transplant, 2012;47(8): 1030–1045.

10. Marchetti O, Lamoth F, Mikulska M, et al. ECIL recommendations for the use of biological markers for the diagnosis of invasive fungal diseases in leukemic patients and hematopoietic SCT recipients. Bone Marrow Transplantation, 2012;47(6): 846–854.

11. Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev, 2011;24(2): 247–280.

12. Escribano P, Marcos-Zambrano LJ, Peláez T, et al. Sputum and bronchial secretion samples are equally useful as bronchoalveolar lavage samples for the diagnosis of invasive pulmonary aspergilosis in selected patients. Med Mycol, 2015;53(3): 235–240.

13. Murray PR, Baron EJ, Jorgensen JH, et al. Manual of Clinical Microbiology. 9th Edition. Washington DC: ASM Press, 2007, p. 2488.

14. Zima T. Laboratorní diagnostika. Praha: Galén 2013. Laboratorní diagnostika v mikrobiologii. s. 901–1013.

15. Rickerts V, Mousset S, Lambrecht E, et al. Comparsion of histopathological analysis, culture, and polymerase chain reaction assays to detect invasive mold infection from biosy speciments. Clin Infect Dis, 2007;44(8): 1078–1083.

16. Rangue S, Normand AC, Cassagne C, et al. MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses, 2014;57(3): 135–140.

17. National Comittee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi. National Committee for Clinical Laboratory Standards, Wayne, PA, USA. Approved Standard M38-A (2002).

18. Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing. EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect, 2008;14: 982–984.

19. Alastruey-Izquierdo A, Melhem MS, Bonfietti LX, et al. Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop Sao Paulo, 2015;57(Suppl.19): 57–64.

20. Van der Linden JWM, Arendrup MC, Waris A, et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerging Infect Dis, 2015;21(6): 1041–1144.,

21. Snelders E, Huis In‘t Veld RA, Rijs AJ, et al. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol, 2009;75: 4053–4057.

22. Snelders E, Camps SM, Karawajczyk A, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One, 2012;7: e31801.

23.Veweij PE, Chowdhary A, Melchers JG, et al. Azole resistence in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis, 2016;62(3): 362–368.

24.Verweij PE, Ananda-Rajah M, Andes D, et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist Updat, 2015;21(22): 30–40.

25. Arendrup MC. Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect, 2014;20(Suppl. 6): 42–48.

26. Maertens JA, Klont R, Masson C, et al. Optimization of the cutoff value of the Aspergillus double-sandwich enzyme immunoassay. Clin Infect Dis, 2007;44(10): 1329–1336.

27. Caillot D, Mannone L, Cuisenier B, et al. Role of early diagnosis and aggressive surgery in the management of invasive pulmonary aspergillosis in neutropenic patients. Clin Microbiol Infect, 2001;7(Suppl. 2): 54–61.

28. Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis, 2006;42(10): 1417–1427.

29. Leeflang MM, Debets-Ossenkopp YJ, Visser CE, et al. Galactomannan detection for invasive aspergillosis in immunocompromized patients. Cochrane Database Syst Rev, 2008;8(4): CD007394.

30. Leeflang MM, Debets-Ossenkopp YJ, Wang J, et al. Galactomannan detection for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev, 2015;30(12): CD007394.

31. Cordonnier C, Botterel F, Ben Amor R, et al. Correlation between galactomannan antigen levels in serum and neutrophil counts in haematological patients with invasive aspergillosis. Clin Microbiol Infect, 2009;15(1): 81–86.

32. Marr KA, Laverdiere M, Gugel A, et al. Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immunoassay. Clin Infect Dis, 2005;40(12): 1762–1769.

33. Klont RR, Mennink-Kersten MA, Verweij PE. Utility of Aspergillus antigen detection in specimens other than serum speciment. Clin Infect Dis, 2004;39(10): 1467–1474.

34. Maertens J, Maertens V, Theunissen K, et al. Bronchoalveolar lavage fluid galactomannan for the diagnosis of invasive pulmonary aspergillosis in patients with hematologic diseases. Clin Infect Dis, 2009;49(11): 1688–1693.

35. Maertens J, Theunissen K, Deeren D, et al. Defining a case of invasive aspergillosis by serum galactomannan. Med Mycol, 2006;44: 173–178.

36. Kosmidis C, Denning D. The clinical spectrum of pulmonary aspergillosis. Thorax, 2015;70(3): 270–277.

37. Guo YL, Chen YQ, Wang K, et al. Accuracy of BAL galactomannan in diag- nosing invasive aspergillosis: a bivariate metaanalysis and systematic review. Chest, 2010;138(4): 817–824.

38. Zhang XB, Chen GP, Lin QC, et al. Bronchoalveolar lavage fluid galactomannan detection for diagnosis of invasive pulmonary aspergillosis in chronic obstructive pulmonary disease. Med Mycol, 2013;51(7): 688–695.

39. Pasqualotto AC, Xavier MO, Sanchez LB, et al. Diagnosis of invasive aspergillosis in lung transplant recipients by detection of galactomannan in the bronchoalveolar lavage fluid. Transplantation, 2010;90(3): 306–311.

40. Izumikawa K, Yamamoto Y, Mihara T, et al. Bronchoalveolar lavage galactomannan for the diagnosis of chronic pulmonary aspergillosis. Med Mycol, 2012; 50(8): 811–817.

41. Thornton CR. Development of an immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. Clin Vaccine Immunol, 2008;15(7): 1095–1105.

42. Pan Z, Fu M, Zhang J, et al. Diagnostic accuracy of a novel lateral-flow device in invasive aspergillosis: a meta-analysis. J Med Microbiol, 2015;64(7): 702–707.

43. White PL, Parr C, Thornton C, et al. Evalution on real-time PCR, galactomannan enzyme-linked immunosorbent assay (ELISA), and a novel lateral-flow device for diagnosis of invasive aspergilosis. J Clin Microbiol, 2013;51(5): 1510–1516.

44. Koo S, Thomas HR, Daniels SD, et al. A Breath Fungal Secondary Metabolite Signature to Diagnose Invasive Aspergillosis. Clin Infect Dis, 2014;59(12): 1733–1740.

45. Ostrosky-Zeichner L, Alexander BD, Kett DH, et al. Multicenter clinical evaluation of the (1→3) β-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis, 2005;41(5): 654–659.

46. Senn L, Robinson JO, Schmidt S, et al. 1,3-Beta-D-glucan antigenemia for early diagnosis of invasive fungal infections in neutropenic patients with acute leukemia. Clin Infect Dis, 2008;46(6): 878–885.

47. Karageorgopoulos DE, Vouloumanou EK, Ntziora F, et al. β-D-glucan assay for the diagnosis of invasive fungal infections: a metaanalysis. Clin Infect Dis, 2011;52(6): 750–770. 48. Onishi A, Sugiyama D, Kogata Y, et al. Diagnostic accuracy of serum 1,3-β-D-glucan for Pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol, 2012;50(1): 7–15.

49. Rose SR, Vallabhajosyula S, Velez M, et al. The utility of bronchoalveolar lavage beta-D-glucan testing for diagnosis of invasive fungal infections. J Infect, 2014;69(3): 278–283.

50. Hoenigl M, Prattes J, Spiess B, et al. Performance of galactomannan, beta-D-glucan, Aspergillus lateral-flow device, conventional culture, and PCR tests with bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J Clin Microbiol, 2014;52(6): 2039–2045.

51. Lamoth F, Alexander BD. Nonmolecular methods for the diagnosis of respiratory fungal of respiratory fungal infections. Clin Lab Med, 2014;34(2): 315–336.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account