#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Flow cytometry in microbiology


Authors: A. Lochmanová 1,2;  D. Chmelař 1,3;  V. Beran 1;  M. Hájek 1,4
Authors‘ workplace: Katedra biomedicínských oborů, Lékařská fakulta Ostravské univerzity, Ostrava 1;  Oddělení imunologie a alergologie, Zdravotní ústav se sídlem v Ostravě, Ostrava 2;  Referenční laboratoř ČR pro anaerobní bakterie, Lékařská fakulta Ostravské univerzity, Ostrava 3;  Centrum hyperbarické medicíny, Městská nemocnice, Ostrava 4
Published in: Epidemiol. Mikrobiol. Imunol. 66, 2017, č. 4, s. 182-188
Category: Review Article

Overview

Flow cytometry is a method that allows simultaneous measurement and analysis of physical and chemical characteristics of cells or other biological particles during their passage through the laser beam. Although this method is mainly used in the study of cell differentiation and functional analysis of eukaryotic cells, the basic principles of flow cytometry can be applied to microorganisms. Methods based on the analysis of a single cell, such as flow cytometry, in combination with measurement of cell viability using special fluorescent probes allow a deeper insight into the diversity of populations and functioning of microbial communities and also facilitate understanding the phy-siological diversity of seemingly similar acting populations. When using specific fluorescent dyes for the selective labeling of selected species of microorganisms, the method is potentially very specific. The aim of this paper is a brief overview of applications of flow cytometry, which can be used in microbiology.

Keywords:
flow cytometry – microbiology – cell identification – cell viability – fluorescence probe


Sources

1. Alvarez-Barrientos A, Arroyo J, Cantón R, Nombela C, Sánchez-Pérez M. Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev, 2000;13(2): 167–195.

2. Ambriz-Aviña V, Contreras-Garduño JA, Pedraza-Reyes M. Applications of flow cytometry to characterize bacterial physiological responses. Biomed Res Int, 2014;2014: 461941. doi: 10.1155/2014/461941. Epub 2014 Sep 9.

3. Assunção P, Antunes NT, Rosales RS, Poveda C, de la Fe C, Poveda JB, Davey HM. Application of flow cytometry for the determination of minimal inhibitory concentration of several antibacterial agents on Mycoplasma hyopneumoniae. J Appl Microbiol, 2007;102(4): 1132–1137.

4. Barbesti S, Citterio S, Labra M, Baroni MD, Neri MG, Sgorbati S. Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria. Cytometry, 2000;40(3): 214–218.

5. Bhupathiraju VK, Hernandez M, Landfear D, Alvarez-Cohen L. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria. J Microbiol Methods, 1999;37(3): 231–243.

6. Branská B, Linhová M, Patáková P, Paulová L, Melzoch K. Stanovení viability mikroorganismů pomocí fluprescencnčí analýzy. Chem Listy, 2011;105: 586–593.

7. Broger T, Odermatt RP, Huber P, Sonnleitner B. Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol, 2011;154(4): 240–247. doi: 10.1016/j.jbiotec.2011.05.003. Epub 2011 May 14.

8. Chau F, Lefort A, Benadda S, Dubée V, Fantin B. Flow cytometry as a tool to determine the effects of cell wall-active antibiotics on vancomycin-susceptible and -resistant Enterococcus faecalis strains. Antimicrob Agents Chemother, 2011;55(1): 395–398.

9. Créach V, Baudoux AC, Bertru G, Rouzic BL. Direct estimate of active bacteria: CTC use and limitations. J Microbiol Methods, 2003;52(1): 19–28.

10. Cronin UP, Wilkinson MG. The use of flow cytometry to study the germination of Bacillus cereus endospores. Cytometry Part A, 2007;71(3): 143–153.

11. Davey HM, Winson MK. Using flow cytometry to quantify microbial heterogeneity. Curr Issues Mol Biol, 2003;5(1): 9–15.

12. Davis C. Enumeration of probiotic strains: Review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods, 2014;103: 9–17.

13. Dive C, Cox H, Watson JV, Workman P. Polar fluorescein derivatives as improved substrate probes for flow cytoenzymological assay of cellular esterases. Mol Cell Probes, 1988;2(2): 131–45.

14. Dreier J, Vollmer T, Kleesiek K. Novel flow cytometry-based screening for bacterial contamination of donor platelet preparations compared with other rapid screening methods. Clin Chem, 2009;55(8): 1492–1502.

15. Faria-Ramos I, Espinar MJ, Rocha R, Santos-Antunes J, Rodrigues AG, Cantón R, Pina-Vaz C. A novel flow cytometric assay for rapid detection of extended-spectrum beta-lactamases. Clin Microbiol Infect, 2013;19(1): E8–E15.

16. Gauthier C, St-Pierre Y, Villemur R. Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry. J Med Microbiol, 2002;51(3): 192–200.

17. Gruden C, Skerlos S, Adriaens P. Flow cytometry for microbial sensing in environmental sustainability applications: current status and future prospects. FEMS Microbiol Ecol, 2004;49(1): 37–49.

18. Herrero M, Quirós C, García LA, Díaz M. Use of flow cytometry to follow the physiological states of microorganisms in cider fermentation processes. Appl Environ Microbiol, 2006;72(10): 6725–6733.

19. Hewitt CJ, Nebe-Von-Caron G. An industrial application of multiparameter flow cytometry: assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry, 2001;44(3): 179–187.

20. Holm C, Jespersen L. A flow-cytometric gram-staining technique for milk-associated bacteria. Appl Environ Microbiol, 2003;69(5): 2857–2863.

21. Jepras RI, Paul FE, Pearson SC, Wilkinson MJ. Rapid assessment of antibiotic effects on Escherichia coli by bis-(1,3-dibutylbarbituric acid) trimethine oxonol and flow cytometry. Antimicrob Agents Chemother, 1997;41(9): 2001–2005.

22. Józwa W, Czaczyk K. Flow cytometric analysis of microbial contamination in food industry technological lines – initial study. Acta Sci Pol Technol Aliment, 2012;11(2): 110–119.

23. Kennedy D, Cronin UP, Wilkinson MG. Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting. Appl Environ Microbiol, 2011;77(13): 4657–4668.

24. Khan MM, Pyle BH, Camper AK. Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry. Appl Environ Microbiol, 2010;76(15): 5088–5096.

25. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007;130(5): 797–810.

26. Lee W, Kwak Y. Antifungal susceptibility testing of Candida species by flow cytometry. J Korean Med Sci, 1999;14(1): 21–26.

27. Mason DJ, Shanmuganathan S, Mortimer FC, Gant VA. A fluorescent Gram stain for flow cytometry and epifluorescence microscopy. Appl Environ Microbiol, 1998;64(7): 2681–2685.

28. Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev, 2010;34(4): 554–587.

29. Novák J, Basařová G, Fiala J, Dostálek P. Průtoková cytometrie ve výzkumu kvasinek Saccharomyces cerevisiae a její aplikace v praxi. Chem Listy, 2008;102: 183–187.

30. Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother, 2000;44(4): 827–834.

31. Nuding S, Zabel LT. Detection, Identification and Susceptibility Testing of Bacteria by Flow Cytometry. J Bacteriol Parasitol, 2013: S5.

32. Prest EI, Hammes F, Kötzsch S, van Loosdrecht MC, Vrouwenvelder JS. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Res, 2013;47(19): 7131–7142.

33. Renggli S, Keck W, Jenal U, Ritz D. Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bactericidal antibiotics. J Bacteriol, 2013;195(18): 4067–4073.

34. Roth BL, Poot M, Yue ST, Millard PJ. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol, 1997;63(6): 2421–2431.

35. Shapiro HM, Nebe-von-Caron G. Multiparameter Flow Cytometry of Bacteria, 33–43 From Methods in Molecular Biology: Flow Cytometry Protocols, 2nd ed. Edited by: T.S. Hawley and R.G. Hawley, Human Press Inc. Totowa NJ

36. Shapiro HM. Practical Flow Cytometry, 3. Vyd. Wiley-Liss, Inc., USA 1995.

37. Shrestha NK, Scalera NM, Wilson DA, Procop GW. Rapid differentiation of methicillin-resistant and methicillin-susceptible Staphylococcus aureus by flow cytometry after brief antibiotic exposure. J Clin Microbiol, 2011;49(6): 2116–2120.

38. Shubar HM, Mayer JP, Hopfenmüller W, Liesenfeld O. A new combined flow-cytometry-based assay reveals excellent activity against Toxoplasma gondii and low toxicity of new bisphosphonates in vitro and in vivo. J Antimicrob Chemother, 2008;61(5): 1110–1119. doi: 10.1093/jac/dkn047. Epub 2008 Feb 19.

39. Suller MT, Stark JM, Lloyd D. A flow cytometric study of antibiotic-induced damage and evaluation as a rapid antibiotic susceptibility test for methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother, 1997;40(1): 77–83.

40. Vives-Rego J, Lebaron P, Nebe-von Caron G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev, 2000;24(4): 429–448.

41. Wikström P, Johansson T, Lundstedt S, Hägglund L, Forsman M. Phenotypic biomonitoring using multivariate flow cytometric analysis of multi-stained microorganisms. See comment in PubMed Commons below. FEMS Microbiol Ecol, 2001;34(3): 187–196.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#