Validity of segmental analysis measurements of body fat distribution acquired by the bioimpedance analyser


Authors: P. Kutáč 1;  M. Sigmund 2
Authors‘ workplace: Katadra studií lidského pohybu, Centrum diagnostiky lidského pohybu, Pedagogická fakulta, Ostravská univerzita, Ostrava vedoucí doc. Mgr. D. Jandačka, Ph. D. 1;  Katedra rekreologie, Fakulta tělesné kultury, Univerzita Palackého, Olomouc vedoucí Mgr. Z. Hamřík, Ph. D. 2
Published in: Čes-slov Pediat 2016; 71 (4): 202-207.
Category: Original Papers

Overview

Objective:
The use of the DEXA method as a criterion to validate results of measurements of body fat segmental distribution while using a tetrapolar bioelectrical analysis.

Methods:
The sample team included 89 individuals (53 males and 36 females). Their average age was 19.7 in case of men, and 19.5 in case of women. These were adolescent individuals without any health issues who were not taking any medication or dietary supplements. Measured parameters included their body height, total body weight, total body fat and body fat in individual segments of the body. The measurement using bioelectric impedance was conducted by the tetrapolar bioimpedance scale Tanita BC 418 MA. To assess the validity we used the modelling of the relationship between the observed variables through various models of regression functions. To assess the empirical validity, the Pearson correlation coefficient (r), standard error of the estimate (Sy/x = SEE) and the marginal error of criterion estimate (dmax) were used.

Results:
When comparing the average values of representation of body fat in individual segments, statistically significant differences were found for all parameters. This also confirmed practical significance as Cohen’s d ranged from 0.5 to 1.5. The values of the Pearson correlation coefficient (r), expressing the degree of validity against the DEXA method, ranged from 0.50 to 0.86. The dmax (±2 Sy/x) values ranged from 0.22 to 0.88 kg and 3.30 to 9.30% of fat.

Conclusions:
Based on the results of the segmental analysis of body fat distribution by the Tanita BC 418 MA analyser, we cannot precisely estimate values acquired by the DEXA method. The results are impacted by the high value of dmax. The empirical validity of the segmental analysis of body fat distribution is still significantly lower than in case of the whole body analysis.

Key words:
statistical significance, practical significance, dual roentgen absorptiometry, standard error of the estimate, adolescent population K.


Sources

1. Heyward VH, Gibson AL. Advanced Fitness Assessment and Excercise Prescription. 7th ed. Champaign, IL: Human Kinetics, 2014: 1–535.

2. Cvejić D, Pejović T, Ostojić S. Assessment of physical fitness in children and adolescents. Facta Universitatis: Series Physical Education & Sport 2013; 11 (2): 135–145.

3. Sousa N, Mendes R, Silva S, et al. Effects of resistance and multicomponent training on body composition and physical fitness of institutionalized elderly women. Br J Sports Med 2013; 47 (10): 21–23.

4. Sofková T, Pridalová M, Mitás J, et al. The level of neighborhood walkability in a place of residence and its effect on body composition in obese and overweight women. Cent Eur J Public Health 2013; 21 (4): 184–192.

5. El Ghoch M, Milanese C, Calugi S, et al. Body composition, eating disorder psychopathology, and psychological distress in anorexia nervosa: a longitudinal study. Am J Clin Nutr 2014; 99 (4): 771–778.

6. Goss AM, Goree LL, Ellis AC, et al. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss. Obesity 2013; 21 (6): 1139–1142.

7. Liu PY, Hornbuckle LM, Ilich JZ, et al. Body composition and muscular strength as predictors of bone mineral density in African American women with metabolic syndrome. Ethnicity & Disease 2014; 24 (3): 356–362.

8. Norouzy A, Salehi M, Philippou E, et al. Effect of fasting in Ramadan on body composition and nutritional intake: a prospective study. J Hum Nutr Diet 2013; 26 (Suppl 1): 97–104.

9. O‘Tierney-Ginn P, Presley L, Minium J, et al. Sex-specific effects of maternal anthropometrics on body composition at birth. Am J Obstet Gynecol 2014; 211 (3): 292–300.

10. Ohashi Y, Otani T, Tai R, et al. Assessment of body composition using dry mass index and ratio of total body water to estimated volume based on bioelectrical impedance analysis in chronic kidney disease pa-tients. J Ren Nutr 2013; 23 (1): 28–36.

11. Alberga AS, Farnesi BC, Lafleche A, et al. The effects of resistance exercise training on body composition and strength in obese prepubertal children. Phys Sportsmed 2013; 41 (3): 103–109.

12. Burns R, Hannon JC, Brusseau TA, et al. Indices of abdominal adiposity and cardiorespiratory fitness test performance in middle-school students. J Obes 2013; 2013: 1–9.

13. Pichler J, Chomtho S, Fewtrell M, et al. Body composition in paediatric intestinal failure patients receiving long-term parenteral nutrition. Arch Dis Child 2014; 99 (2): 147–153.

14. Sunderland KL, Tryggestad JB, Wang JJ, et al. Pigment epithelium-derived factor (PEDF) varies with body composition and insulin resistance in healthy young people. J Clin Endocrinol Metab 2012; 97 (11): 2114–2121.

15. Vergara FV, Bustos ED, Marques LL, et al. The four-compartment model of body composition in obese Chilean schoolchildren, by pubertal stage: comparison with simpler models. Nutrition 2014; 30 (3): 305–312.

16. Heymsfield SB, Lohman TG, Wang Z, et al. Human Body Composition. 2nd ed. Champaign, IL: Human Kinetics, 2005: 1–523.

17. Beeson WL, Batech M, Schultz E, et al. Comparison of body composition by bioelectrical impedance analysis and dual-energy X-ray absorptiometry in Hispanic diabetics. Int J Body Compos Res 2010; 8 (2): 45–50.

18. Dolezal BA, Lau MJ, Abrazado M, et al. Validity of two commercial grade bioelectrical impedance analyzers for measurement of body fat percentage. J Exerc Physiol Online 2013; 16 (4): 74–83.

19. Gupta N, Balasekaran G, Victor Govindaswamy V, et al. Comparison of body composition with bioelectric impedance (BIA) and dual energy X-ray absorptiometry (DEXA) among Singapore Chinese. J Sci Med Sport 2011; 14 (1): 33–37.

20. Leahy S, O‘Neill C, Sohun R, et al. A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults. Eur J Appl Physiol 2012; 112 (2): 589–595.

21. Rutherford WJ, Diemer GA, Scott ED. Assessment of body composition in healthy young adults. Journal of Research in Health, Physical Education, Recreation, Sport & Dance 2011; 6 (2): 56–61.

22. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New Jersey: Lawrence Erlbaum Associates, 1988: 1–567.

23. Heyward VH, Wagner DR. Applied Body Composition Assessment. 2nd ed. Champaign, IL: Human Kinetics, 2004: 1–268.

24. Westgard JO. Basic Method Validation. 2nd ed. Madison: Wesgard Q.C., 2008: 1–320.

25. Duz S, Kocak M, Korkusuz F. Evaluation of body composition using three different methods compared to dual-energy X-ray absorptiometry. Eur J Sport Sci 2009; 9 (3): 181–190.

26. Karelis AD, Chamberland G, Aubertin-Leheudre M,et al. Validation of a portable bioelectrical impedance analyzer for the assessment of body composition. Appl Physiol Nutr Metab 2013; 38 (1): 27–32.

27. Kutáč P, Gajda V, Přidalová M, et al. Validity of measuring body composition by means of the BIA method. New Medicine 2008; 12 (4): 89–93.

28. Loenneke JP, Wray ME, Wilson JM, et al. Accuracy of field methods in assessing body fat in collegiate baseball players. Res Sports Med 2013; 21 (3): 286–291.

29. Wang JG, Zhang Y, Chen HE, et al. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition. J Strength Cond Res 2013; 27 (1): 236–243.

30. Duvnjak L, Duvnjak M. The metabolic syndrome – an ongoing story. J Physiol Pharmacol 2009; 60 (Suppl 7): 19–24.

31. Gupta A, Gupta V. Metabolic syndrome: what are the risks for humans? Biosci Trends 2010; 4 (5): 204–212.

32. Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb 2010; 17 (4): 332–341.

33. Ning Y, Yang S, Evans RK, et al. Changes in body anthropometry and composition in obese adolescents in a lifestyle intervention program. Eur J Nutr 2014; 53 (4): 1093–1102.

34. Buśko K. A comparative analysis of tfie anthropometric method and bioelectrical impedance analysis on changes in body composition of female volleyball players during the 2010/2011 season. Human Movement 2012; 13 (2): 127–131.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account