Genetic and Environmental Factors Involved in the Pathogenesis of Multiple Sclerosis


Authors: L. Krížová 1;  B. Kollár 1;  Z. Čarnická 1;  P. Šiarnik 1;  D. Ježová 2;  P. Turčáni 1
Authors‘ workplace: I. neurologická klinika LF UK a UN Bratislava 1;  Ústav experimentálnej endokrinológie SAV Bratislava 2
Published in: Cesk Slov Neurol N 2013; 76/109(4): 430-437
Category: Review Article

Podporené grantom APVV-0028-10.

Overview

The analysis of human genome allowed identification of a great number of gene loci asso­ciated with an increased risk of multiple sclerosis. The most researched and clearly genetically associated with multiple sclerosis is the locus for a set of genes of the major histocompatibi­lity complex. The HLA-DRB1 allele is considered to be one of the most important risk alleles. Recently identified IL2RA, IL7RA, MGAT1, CYP27B1, CD6 and TYK2 are thought to be of potential causal relevance. Future genetic therapy for multiple sclerosis may involve induction of modified immunological mechanisms via modulated function of products of certain protective gene variants. Evidence is growing on a significant interaction between genetic, epigenetic and environmental factors. It has been suggested that several genes associated with multiple sclerosis are regulated by vitamin D. Moreover, gene variants causing significant changes in vitamin D levels have been identified. Mutation in the CYP27B1 gene may lead to a significant decrease in concentrations of the active form of vitamin D, resulting in an increased susceptibility to the disease. Future studies are expected to bring new information on causal alleles, regulatory mechanisms as well as epigenetic factors associated with multiple sclerosis.

Key words:
multiple sclerosis – risk genetic variants –risk locus – major histocompatibility complex – vitamin D


Sources

1. International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell‑ mediated immune mechanisms in multiple sclerosis. Nature 2011; 476(7359): 214– 219.

2. Haines JL, Terwedow HA, Burgess K, Pericak‑ Vance MA, Rimmler JB, Martin ER et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 1998; 7(8): 1229– 1234.

3. Jadidi‑ Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol 2011; 74(1): 1– 13.

4. Jersild C, Fog T, Hansen GS,Thomsen M, Svejgaard A,Dupont B. Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. Lancet 1973; 2(7840): 1221– 1225.

5. Naito S, Namerow N, Mickey MR, Terasaki PI. Multiple sclerosis: association with HL‑A3. Tissue Antigens 1972; 2(1): 1– 4.

6. Jersild C, Svejgaard A, Fog T. HLA antigens and multiple sclerosis. Lancet 1972; 1(7762): 1240– 1241.

7. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37(10): 1108– 1112.

8. Lincoln MR, Ramagopalan SV, Chao MJ, Herrera BM, Deluca GC, Orton SM et al. Epistasis among HLA‑DRB1, HLA‑DQA1, and HLA‑DQB1 loci determines multiple sclerosis susceptibility. Proc Natl Acad Sci U S A 2009; 106(18): 7542– 7547.

9. Sadovnick AD. Genetic background of multiple sclerosis. Autoimmun Rev 2012; 11(3): 163– 166.

10. Chao MJ, Barnardo MC, Lincoln MR, Ramagopalan SV, Herrera BM, Dyment DA et al. HLA class I alleles tag HLA‑DRB1*1501 haplotypes for differential risk inmultiple sclerosis susceptibility. Proc Natl Acad Sci U S A 2008; 105(35): 13069– 13074.

11. Dyment DA, Herrera BM, Cader MZ, Willer CJ, Lincoln MR, Sadovnick AD et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet 2005; 14(14): 2019– 2026.

12. Jong BA, Huizinga TW, Zanelli E, Giphart MJ, Bollen EL, Uitdehaag BM et al. Evidence for additional genetic risk indicators of relapse‑ onset MS within the HLA region. Neurology 2002; 59(4): 549– 555.

13. Alcina A, Abad‑ GrauM del M, Fedetz M, Iz-quierdo G,Lucas M, Fernández O et al. Multiple sclerosis risk variant HLA‑DRB1*1501 associates with high expression of DRB1 gene in different human populations. PLoS One 2012; 7(1): e29819.

14. Brassat D, Salemi G, Barcellos LF, McNeill G, Proia P,Hauser SL et al. The HLA locus and multiple sclerosis in Sicily. Neurology 2005; 64(2): 361– 363.

15. Stewart GJ, Teutsch SM, Castle M, Heard RN, Bennetts BH. HLA‑DR, - DQA1 and - DQB1 associations in Australian multiple sclerosis patients. Eur J Immunogenet 1997; 24(2): 81– 92.

16. McElroy JP, Cree BA, Caillier SJ, Gregersen PK, Herbert J, Khan OA et al. Refining the association of MHC with multiple sclerosis in African Americans. Hum Mol Genet 2010; 19(15): 3080– 3088.

17. Benešová Y, Vašků A, Stourač P, Hladíková M, Fiala A, Bednařík J et al. Association of HLA‑DRB1*1501 tagging rs3135388 gene polymorphism with multiple sclerosis. J Neuroimmunol 2013; 255(1– 2): 92– 96.

18. Field J, Browning SR, Johnson LJ, Danoy P, Varney MD, Tait BD et al. A polymorphism in the HLA‑DPB1 gene is associated with susceptibility to multiple sclerosis. PLoS One 2010; 5(10): e13454.

19. Healy BC, Liguori M, Tran D, Chitnis T, Glanz B, Wolfish C et al. HLA B*44: protective effects in MS susceptibility and MRI outcome measures. Neurology 2010; 75(7): 634– 640.

20. Ramagopalan SV, Morris AP, Dyment DA, Herrera BM, DeLuca GC, Lincoln MR et al. The inheritance of resistance alleles in multiple sclerosis. PLoS Genet 2007; 3(9): 1607– 1613.

21. Marrosu MG, Murru MR, Costa G, Murru R, Muntoni F, Cucca F et al. DRB1-DQA1- DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet 1998; 7(8): 1235– 1237.

22. Aláez C, Corona T, Ruano L, Flores H, Loyola M, Gorodezky C. Mediterranean and Amerindian MHC class II alleles are associated with multiple sclerosis in Mexicans. Acta Neurol Scand 2005; 112(5): 317– 322.

23. Baranzini SE, Nickles D. Genetics of multiple sclerosis: swimming in an ocean of data. Curr Opin Neurol 2012; 25(3): 239– 245.

24. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallström E, Khademi M et al. Variation in interleukin 7receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 2007; 39(9): 1108– 1113.

25. Hoppenbrouwers IA, Aulchenko YS, Ebers GC, Ramagopalan SV, Oostra BA, van Duijn CM et al. EVI5 is a risk gene for multiple sclerosis. Genes Immun 2008; 9(4): 334– 337.

26. Aulchenko YS, Hoppenbrouwers IA, Ramagopalan SV, Broer L, Jafari N, Hillert Jet al. Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis. Nat Genet 2008; 40(12): 1402– 1403.

27. Goris A, Sawcer S, Vandenbroeck K, Carton H, Billiau A, Setakis et al. New candidate loci for multiple sclerosis susceptibility revealed by a whole genome association screen in a Belgian population. J Neuroimmunol 2003; 143(1– 2): 65– 69.

28. Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B,Zhou RW et al. Genetics and the environment converge to dysregulate N‑ glycosylation in multiple sclerosis. Nat Commun 2011; 2: 334.

29. Grigorian A, Mkhikian H, Li CF, Newton BL, Zhou RW, Demetriou M et al. Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N‑ glycosylation. Semin Immunopathol 2012; 34(3): 415– 424.

30. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z,Yao Z et al. Interleukin‑2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007; 26(3): 371– 381.

31. Babron MC, Perdry H, Handel AE, Ramagopalan SV, Damotte V, Fontaine B et al. Determination of the real effect of genes identified in GWAS: the example of IL2RA in multiple sclerosis. Eur J Hum Genet 2012; 20(3): 321– 325.

32. Weber F, Fontaine B, Cournu‑ Rebeix I, Kroner A, Knop M, Lutz S et al. IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun 2008; 9(3): 259– 263.

33. Bilińska M, Frydecka I, Noga L, Dobosz T, Zołedziewska M, Suwalska K et al. Progression of multiple sclerosis is associated with exon 1 CTLA‑ 4 gene polymorphism. Acta Neurol Scand 2004; 110(1): 67– 71.

34. Zhang Z, Duvefelt K, Svensson F, Masterman T, Jonasdottir G, Salter H et al. Two genes encoding immune‑ regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immun 2005; 6(2): 145– 152.

35. Kofler DM, Severson CA, Mousissian N, DeJager PL, Hafler DA. The CD6 multiple sclerosis susceptibility allele is associated with alterations in CD4+ T cell proliferation. J Immunol 2011; 187(6): 3286– 3291.

36. Couturier N, Bucciarelli F, Nurtdinov RN, Debouverie M, Lebrun‑ Frenay C, Defer G et al. Tyrosine kinase 2 variant influences T lymphocyte polarization andmultiple sclerosis susceptibility. Brain 2011; 134(3): 693– 703.

37. GAMES; Transatlantic Multiple Sclerosis Genetics Cooperative. A meta‑analysis of whole genome linkage screens in multiple sclerosis. J Neuroimmunol 2003; 143(1– 2): 39– 46.

38. Fogdell A, Olerup O, Fredrikson S, Vrethem M, Hil­lert J. Linkage analysis of HLA class II genes in Swedish multiplex families with multiple sclerosis. Neurology 1997; 48(3): 758– 762.

39. Kuokkanen S, Gschwend M, Rioux JD, Daly MJ, Terwilliger JD, Tienari PJ et al. Genomewide scan of multiple sclerosis in Finnish multiplex families. Am J Hum Genet 1997; 61(6): 1379– 1387.

40. Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N,Chataway J et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996; 13(4): 464– 468.

41. D‘Netto MJ, Ward H, Morrison KM, Ramagopalan SV, Dyment DA, DeLuca GC et al. Risk alleles for multiple sclerosis in multiplex families. Neurology 2009; 72(23): 1984– 1988.

42. Kantarci OH, Goris A, Hebrink DD, Heggarty S, Cunningham S, Alloza I et al. IFNG polymorphisms are associated with gender differences in susceptibility to multiple sclerosis. Genes Immun 2005; 6(2): 153– 161.

43. Pelfrey CM, Cotleur AC, Lee JC, Rudick RA. Sex differences in cytokine responses to myelin peptides in multiple sclerosis. J Neuroimmunol 2002; 130(1– 2): 211– 223.

44. Moldovan IR, Cotleur AC, Zamor N, Butler RS, Pelfrey CM et al. Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens. J Neuroimmunol 2008; 193(1– 2): 161– 169.

45. Kantarci OH, Barcellos LF, Atkinson EJ, Ramsay PP, Lincoln R, Achenbach SJ et al. Men transmit MS more often to their children vs women: the Carter effect. Neurology 2006; 67(2): 305– 310.

46. Weinshenker BG, Santrach P, Bissonet AS, McDonnell SK, Schaid D, Moore SB et al. Major histocompatibility complex class II alleles and the course and outcome of MS: a population‑based study. Neurology 1998; 51: 742– 747.

47. Ramagopalan SV, Byrnes JK, Dyment DA,Guimond C,Handunnetthi L, Disanto G et al. Parent‑ of‑ origin of HLA‑DRB1*1501 and age of onset of multiple sclerosis. J Hum Genet 2009; 54(9): 547– 549.

48. Zivadinov R, Uxa L, Zacchi T, Nasuelli D, Ukmar M, Furlan C et al. HLA genotypes and disease severity assessed by magnetic resonance imaging findings in patients with multiple sclerosis. J Neurol 2003; 250(9): 1099– 1106.

49. Kallaur AP, Kaimen‑ Maciel DR, Morimoto HK, Watanabe MAE, Georgeto SM, Reiche EM. Genetic polymorphisms associated with the development and clinical course of multiple sclerosis (review). Int J Mol Med 2011; 28(4): 467– 479.

50. Stegbauer J, Lee DH, Seubert S, Ellrichmann G, Manzel A, Kvakan H et al. Role of the renin‑angiotensin system in autoimmune inflammation of the central nervous system. Proc Natl Acad Sci USA 2009; 106(35): 14942– 14947.

51. Kawajiri M, Mogi M, Osoegawa M, Matsuoka T, Tsukuda K, Kohara K et al. Reduction of angiotensin II in the cerebrospinal fluid of patients with multiple sclerosis. Mult Scler 2008; 14(4): 557– 560.

52. Hladikova M, Vašků A, Stourač P, Benešová Y, Bednařík J. Two frequent polymorphisms of angiotensinogen and their association with multiple sclerosis progression rate. J Neurol Sci 2011; 303(1– 2): 31– 34.

53. Djelilovic‑ Vranic J, Alajbegovic A. Role of early viral infections in development of multiple sclerosis. Med Arh 2012; 66 (3 Suppl 1): 37– 40.

54. Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernán MA, Olek MJ et al. Epstein‑Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 2001; 286(24): 3083– 3088.

55. Chastain EM, Miller SD. Molecular mimicry as an inducing trigger for CNS autoimmune demyelinating disease. Immunol Rev 2012; 245(1): 227– 238.

56. Disanto G, Meier U, Giovannoni G, Ramagopalan SV. Vitamin D: a link between Epstein‑Barr virus and multiple sclerosis development? Expert Rev Neurother 2011; 11(9): 1221– 1224.

57. Nielsen TR, Rostgaard K, Nielsen NM, Koch‑ Henriksen N, Haahr S, Sørensen PS et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol 2007; 64(1): 72– 75.

58. Yenamandra SP, Hellman U, Kempkes B, Darekar SD, Petermann S, Sculley T et al. Epstein‑Barr virus encoded EBNA‑ 3 binds to vitamin D receptor and blocks activation of its target genes. Cell Mol Life Sci 2010; 67(24): 4249– 4256.

59. Munger KL, Levin LI, Hollis, BW, Howard NS, Ascherio A. Serum 25– hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006; 296(23): 2832– 2838.

60. Munger KL, Zhang SM, O‘Reilly E, Hernán MA, Olek MJ, Willett WC et al. Vitamin D intake and incidence of multiple sclerosis. Neurology 2004; 62(1): 60– 65.

61. Mirzaei F, Michels KB, Munger K, O‘Reilly E, Chitnis T, Forman MR et al. Gestational vitamin D and the risk of multiple sclerosis in offspring. Ann Neurol 2011; 70(1): 30– 40.

62. Nieves J, Cosman F, Herbert J, Shen V, Lindsay R. High prevalence of vitamin D deficiency and reduced bone mass inmultiple sclerosis. Neurology 1994; 44(9): 1687– 1692.

63. Pierrot‑ Deseilligny C, Souberbielle JC. Is hypovitaminosis D one of the environmental risk factors for multiple sclerosis? Brain 2010; 133(7): 1869– 1888.

64. Staples J, Ponsonby AL, Lim L. Low maternal exposure to ultraviolet radiation in pregnancy, month of birth, and risk of multiple sclerosis in offspring: longitudinal analysis. BMJ 2010; 340: c1640.

65. Willer CJ, Dyment DA, SadovnickAD, Rothwell PM, Murray TJ, Ebers GC et al. Timing of birth and risk of multiple sclerosis: population based study. BMJ 2005; 330(7483): 120.

66. Holick MF. Vitamin D: A millenium perspective. J Cell Biochem 2003; 88(2): 296– 307.

67. Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell AA. ChIP‑ seq defined genome‑ wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res 2010; 20(10): 1352– 1360.

68. Ramagopalan SV, Maugeri NJ, Handunnetthi L, Lincoln MR, Orton SM, Dyment DA et al. Expression of the multiple sclerosis‑associated MHC class II Allele HLA‑DRB1*1501 is regulated by vitamin D. PLoS Genet 2009; 5(2): e1000369.

69. Alloza I, Otaegui D, de Lapuente AL, Antigüedad A,Varadé J, Núñez C et al. ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes Immun 2012; 13(3), 253– 257.

70. Ramagopalan SV, Dyment DA, Cader MZ, Morrison KM, Disanto G, Morahan JM et al. Rare variants in the CYP27B1 gene are associated with multiple sclerosis. Ann Neurol 2011; 70(6): 881– 886.

71. Huang J, Xie ZF. Polymorphisms in the vitamin D receptor gene and multiple sclerosis risk: a meta‑analysis of case‑ control studies. J Neurol Sci 2012; 313(1– 2): 79– 85.

72. Ahn J, Yu K, Stolzenberg‑ Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ et al. Genome‑ wide association study of circulating vitamin D levels. Hum Mol Genet 2010; 19(13): 2739– 2745.

73. Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y. Epigenetics and autoimmunity. J Autoimmun 2010; 34(3): J207– J219.

74. Kaliszewska A, De Jager PL. Exploring the role of the epigenome in multiple sclerosis: a window onto cell‑ specific transcriptional potential. J Neuroimmunol 2012; 248(1– 2): 2– 9.

75. Burrell AM, Handel AE, Ramagopalan SV, Ebers GC, Morahan JM. Epigenetic mechanisms in multiple sclerosis and the major histocompatibility complex (MHC). Discov Med 2011; 11(58): 187– 196.

76. Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L et al. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 2012; 39(5): 6219– 6225.

77. Oksenberg JR, Baranzini SE. Multiple sclerosis genetics –  is the glass half full, or half empty? Nat Rev Neurol 2010; 6(8): 429– 437.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 4

2013 Issue 4

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account