Type 2 diabetes mellitus and bone quality


Authors: MUDr. Raška Ivan, Ph.D.
Authors‘ workplace: III. interní klinika 1. LF UK a VFN v Praze
Published in: Clinical Osteology 2018; 23(3): 120-125
Category:

Overview

Type 2 diabetes mellitus (T2DM) is a common disease occurring especially in overweight and obese patients. Dia­betic neuropathy, retinopathy or nephropathy are well known complications of diabetes. Recently, complications of diabetes associated with bone metabolism disorder are becoming more widespread. It has been shown that patients with T2DM have an increased risk of fragility fractures including hip fractures. Despite the increased risk of fracture, patients with T2DM have normal or even increased bone density. A bone quality disorder that we have not yet been able to evaluate non-invasively, plays an important role in the pathogenesis of increased bone fragility (dia­betic osteopathy). Further study is warranted to find another biochemical and imaging parameters that allow early recognition of patients with T2DM with an increased risk of fracture. Patients with T2DM with an increased risk of fracture should be actively sought and adequate preventive or therapeutic measures should be taken into account. The article gives a brief overview of the current knowledge and differences in bone metabolism in patients with T2DM and markers that appear to be promising indicators of bone quality disorder in patients with T2DM.

Keywords:

AGEs – fractures – osteoporosis – sclerostine – type 2 diabetes mellitus


Sources
  1. Vestergaard P, Rejnmark L, MosekildeL. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 2009; 84(1): 45–55. Dostupné z DOI: <http://doi: 10.1007/s00223–008–9195–5>.
  2. Wang H, Ba Y, Xing Q et al. Diabetes mellitus and the risk of fractures at specific sites: a meta-analysis. BMJ Open 2019; 9(1): e024067. Dostupné z DOI: <http://doi: 10.1136/bmjopen-2018–024067>.
  3. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos Int 2007; 18(4):427–444. Dostupné z DOI: <http://doi: 10.1007/s00198–006–0253–4>.
  4. Leslie WD, Aubry-Rozier B, Lamy O et al. Manitoba Bone Density Program. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 2013; 98(2): 602–609. Dostupné z DOI: <http://doi: 10.1210/jc.2012–3118>.
  5. Garnero P. The contribution of collagen crosslinks to bone strength. Bonekey Rep 2012; 1: 182. Dostupné z DOI: <http://doi: 10.1038/bonekey.2012.182>.
  6. Kume S, Kato S, Yamagishi S et al. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 2005; 20(9): 1647–1658. Dostupné z DOI: <http://doi: 10.1359/JBMR.050514>.
  7. Yamagishi S. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets 2011; 12(14): 2096–2102.
  8. Schwartz AV, Garnero P, Hillier TA et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 2009; 94(7): 2380–2386. Dostupné z DOI: <http://doi: 10.1210/jc.2008–2498>.
  9. Yamamoto M, Yamaguchi T, Yamauchi M et al. Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 2009; 32(12):2263–2268. Dostupné z DOI: <http://doi: 10.2337/dc09–0901>.
  10. Xu J, Yue F, Wang J et al. High glucose inhibits receptor activator of nuclear factorκB ligand-induced osteoclast differentiation via downregulation of vATPase V0 subunit d2 and dendritic cellspecific transmembrane protein. Mol Med Rep 2015; 11(2): 865–870. Dostupné z DOI: <http://doi: 10.3892/mmr.2014.2807>.
  11. Deng X, Xu M, Shen M et al. Effects of Type 2 Diabetic Serum on Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. J Diabetes Res 2018; 2018: 5765478. Dostupné z DOI: <http://doi: 10.1155/2018/5765478>.
  12. Starup-Linde J, Hygum K, Langdahl BL. Skeletal Fragility in Type 2 Diabetes Mellitus. Endocrinol Metab (Seoul) 2018; 33(3): 339–351. Dostupné z DOI: <http://doi: 10.3803/EnM.2018.33.3.339>.
  13. Hygum K, Starup-Linde J, Harsløf T et al. Mechanisms in endocrinology: Diabetes mellitus, a state of low bone turnover – a systematic review and meta-analysis. Eur J Endocrinol 2017; 176(3):R137-R157. Dostupné z DOI: <http://doi: 10.1530/EJE-16–0652>.
  14. Lin C, Jiang X, Dai Z et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 2009; 24(10):1651–1661. Dostupné z DOI: <http://doi: 10.1359/jbmr.090411>.
  15. Zhou YJ, Li A, Song YL et al. Role of sclerostin in the bone loss of postmenopausal chinese women with type 2 diabetes. Chin Med Sci J 2013; 28(3): 135–139.
  16. Raška I, jr, Rašková M, Zikán V et al. Prevalence and Risk Factors of Osteoporosis in Postmenopausal Women with Type 2 Diabetes Mellitus. Cent Eur J Public Health 2017; 25(1): 3–10. Dostupné z DOI: <http://doi: 10.21101/cejph.a4717>.
  17. Nakashima A, Yokoyama K, Kawanami D et al. Association between resistin and fibroblast growth factor 23 in patients with type 2 diabetes mellitus. Sci Rep 2018; 8(1): 13999. Dostupné z DOI: <http://doi: 10.1038/s41598–018–32432-z>.
  18. Burghardt AJ, Issever AS, Schwartz AV et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95(11): 5045–5055. Dostupné z DOI: <http://doi: 10.1210/jc.2010–0226>.
  19. Farr JN, Khosla S. Determinants of bone strength and quality in diabetes mellitus in humans. Bone 2016; 82: 28–34. Dostupné z DOI: <http://doi: 10.1016/j.bone.2015.07.027>.
  20. Samelson EJ, Demissie S, Cupples LA et al. Diabetes and Deficits in Cortical Bone Density, Microarchitecture, and Bone Size: Framingham HR-pQCT Study. J Bone Miner Res 2018; 33(1): 54–62. Dostupné z DOI: <http://doi: 10.1002/jbmr.3240>.
  21. Kalyani RR, Tra Y, Yeh HC et al. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: results from the National Health and Nutrition Examination Survey, 1999–2002. J Am Geriatr Soc 2013; 61(5):769–775. Dostupné z DOI: <http://doi: 10.1111/jgs.12204>.
  22. Trierweiler H, Kisielewicz G, Hoffmann Jonasson T et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr 2018; 10:25. Dostupné z DOI: <http://doi: 10.1186/s13098–018–0326–5>.
  23. Mori H, Kuroda A, Araki M et al. Advanced glycation end-products are a risk for muscle weakness in Japanese patients with type 1 diabetes. J Diabetes Investig 2017; 8(3): 377–382. Dostupné z DOI: <http://doi: 10.1111/jdi.12582>.
  24. Raška I, jr, Rašková M, Zikán V et al. Body composition is associated with bone and glucose metabolism in postmenopausal women with type 2 diabetes mellitus. Physiol Res 2017; 66(1): 99–111.
  25. Penckofer S, Kouba J, Wallis DE et al. Vitamin D and diabetes: let the sunshine in. Diabetes Educ 2008; 34(6): 939–940; 942; 944 passim. Dostupné z DOI: <http://doi: 10.1177/0145721708326764>.
  26. Tahrani AA, Ball A, Shepherd L et al. The prevalence of vitamin D abnormalities in South Asians with type 2 diabetes mellitus in the UK. Int J Clin Pract 2010; 64(3): 351–355. Dostupné z DOI: <http://doi: 10.1111/j.1742–1241.2009.02221.x>.
  27. Miñambres I, Sánchez-Quesada JL, Vinagre I et al. Hypovitaminosis D in type 2 diabetes: relation with features of the metabolic syndrome and glycemic control. Endocr Res 2015; 40(3): 160–165. Dostupné z DOI: <http://doi: 10.3109/07435800.2014.982326>.
  28. Muscogiuri G, Nuzzo V, Gatti A et al. Hypovitaminosis D: a novel risk factor for coronary heart disease in type 2 diabetes? Endocrine 2016; 51(2): 268–273. Dostupné z DOI: <http://doi: 10.1007/s12020–015–0609–7>.
  29. Raška I, jr, Rašková M, Zikán V et al. High Prevalence of Hypovitaminosis D in Postmenopausal Women with Type 2 Diabetes Mellitus. Prague Med Rep 2016; 117(1): 5–17. Dostupné z DOI: <http://doi: 10.14712/23362936.2016.1>.
  30. Rahi B, Morais JA, Gaudreau Pet al. Energy and protein intakes and their association with a decline in functional capacity among diabetic older adults from the NuAge cohort. Eur J Nutr 2016; 55(4): 1729–1739. Dostupné z DOI: <http://doi: 10.1007/s00394–015–0991–1>.
  31. Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 2017; 60(6): 943–951. Dostupné z DOI: <http://doi: 10.1007/s00125–017–4278–3>.
  32. Vestergaard P, Rejnmark, L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005; 48(7): 1292–1299. Dostupné z DOI: <http://doi: 10.1007/s00125–005–1786–3>.
  33. Starup-Linde J, Gregersen S, Frost M et al. Use of glucose-lowering drugs and risk of fracture in patients with type 2 diabetes. Bone 2017; 95: 136–142. Dostupné z DOI: <http://doi: 10.1016/j.bone.2016.11.026>.
  34. Lapane KL, Yang S, Brown MJ et al. Sulfonylureas and risk of falls and fractures: a systematic review. Drugs Aging 2013; 30(7): 527–547. Dostupné z DOI: <http://doi: 10.1007/s40266–013–0081–0>.
  35. Rajpathak SN, Fu C, Brodovicz KG et al. Sulfonylurea use and risk of hip fractures among elderly men and women with type 2 diabetes. Drugs Aging 2015; 32(4): 321–327. Dostupné z DOI: <http://doi: 10.1007/s40266–015–0254–0>.
  36. Harsløf T, Wamberg L, MøllerL et al. Rosiglitazone decreases bone mass and bone marrow fat. J Clin Endocrinol Metab 2011; 96(5): 1541–1548. Dostupné z DOI: <http://doi: 10.1210/jc.2010–2077>.
  37. Watts NB, Bilezikian JP, Usiskin K et al. Effects of Canagliflozin on Fracture Risk in Patients With Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 2016; 101(1): 157–166. Dostupné z DOI: <http://doi: 10.1210/jc.2015–3167>.
  38. Tang HL, Li DD, Zhang JJ et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab 2016; 18(12): 1199–1206. Dostupné z DOI: <http://doi: 10.1111/dom.12742>.
  39. Kohler S, Kaspers S, Salsali A et al. Analysis of Fractures in Patients With Type 2 Diabetes Treated With Empagliflozin in Pooled Data From Placebo-Controlled Trials and a Head-to-Head Study Versus Glimepiride. Diabetes Care 2018; 41(8): 1809–1816. Dostupné z DOI: <http://doi: 10.2337/dc17–1525>.
  40. Toulis KA, Bilezikian JP, Thomas GN et al. Initiation of dapagliflozin and treatment-emergent fractures. Diabetes Obes Metab 2018; 20(4): 1070–1074. Dostupné z DOI: <http://doi: 10.1111/dom.13176>.
  41. Giangregorio LM, Leslie WD, Lix LM et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 2012; 27(2): 301–308. Dostupné z DOI: <http://doi: 10.1002/jbmr.556>.
  42. Anagnostis P, Paschou SA, Gkekas NN et al. Efficacy of anti-osteoporotic medications in patients with type 1 and 2 diabetes mellitus: a systematic review. Endocrine 2018; 60(3): 373–383. Dostupné z DOI: <http://doi: 10.1007/s12020–018–1548-x>.
  43. Vestergaard P, Rejnmark L, Mosekilde L. Are antiresorptive drugs effective against fractures in patients with diabetes? Calcif Tissue Int 2011; 88: 209–214. Dostupné z DOI: <http://doi: 10.1007/s00223–010–9450–4>.
  44. Schwartz AV, Pavo I, Alam J et al. Teriparatide in patients with osteoporosis and type 2 diabetes. Bone 2016; 91: 152–158. Dostupné z DOI: <http://doi: 10.1016/j.bone.2016.06.017>.
  45. Ferrari SL, Abrahamsen B, Napoli N et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int 2018; 29(12): 2585–2596. Dostupné z DOI: <http://doi: 10.1007/s00198–018–4650–2>.
Labels
Clinical biochemistry Paediatric gynaecology Paediatric radiology Paediatric rheumatology Endocrinology Gynaecology and obstetrics Internal medicine Orthopaedics Radiodiagnostics Rehabilitation Rheumatology Traumatology fenix.admin.empty
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account