The past, present and future of LESS and NOTES


Authors: M. Morgan;  J. A. Cadeddu
Published in: Urol List 2014; 12(2): 52-57

Overview

The concept of laparoendoscopic single‑site surgery (LESS) and natural orifice transluminal endoscopic surgery (NOTES) are based on the minimization of skin incision to gain access to the peritoneal cavity to perform surgery. This concept may translate into benefits for patients in terms of recovery time, pain, cosmesis and reduction in port- site complications. Despite the increased interest of these novel approaches worldwide, their claimed advantages have yet to be demonstrated. To overcome the surgical challenges in LESS such as instrument clashing and lack of true triangulation, new technological developments in instrumentation have been designed. The incorporation of novel robotic surgical platforms (R- LESS) have improved the ergonomic challenges and have further advanced LESS surgery. Other promising devices include magnetic anchoring and guidance systems as well as miniature ­in vivo robots that can be placed intra– abdominally and controlled wirelessly. In this article, we review the cur­rent and future innovations LESS and NOTES technology.

Key words:
laparoendoscopic single-site surgery, natural orifice translumenal endoscopic surgery, technology, instrumentation


Sources

1. Raman JD, Bagrodia A, Cadeddu JA. Single‑incision, umbilical laparoscopic versus conventional laparoscopic nephrectomy: a comparison of perioperative outcomes and short‑term measures of convalescence. Eur Urol 2009; 55(5): 1198– 1204. doi: 10.1016/ j.eururo.2008.08.019.

2. Canes D, Berger A, Aron M et al. Laparo‑endoscopic single site (LESS) versus standard laparoscopic left donor nephrectomy: matched- pair comparison. Eur Urol 2010; 57(1): 95– 101. doi: 10.1016/ j.eururo.2009.07.023.

3. Rane A, Ahmed S, Kommu SS et al. Single‑port ‚scarless‘ laparoscopic nephrectomies: the United Kingdom experience. BJU Int 2009; 104(2): 230– 233. doi: 10.1111/ j.1464‑ 410X.2009.08399.x.

4. White MA, Autorino R, Hillyer SP et al. Robotic laparoendoscopic single‑site surgery: the way forward. Arch Esp Urol 2012; 65(3): 357– 365.

5. Rane A, Autorino R. Robotic natural orifice translumenal endoscopic surgery and laparoendoscopic single‑site surgery: current status. Curr Opin Urol 2011; 21(1): 71– 77. doi: 10.1097/ MOU.0b013e32833fd602.

6. Spana G, Rane A, Kaouk JH. Is robotics the future of laparoendoscopic single‑site surgery (LESS)? BJU Int 2011; 108(6 Pt 2): 1018– 1023. doi: 10.1111/ j.1464‑ 410X.2011.10513.x.

7. Box GN, Lee HJ, Santos RJ et al. Rapid communication: robot- assisted NOTES nephrectomy: initial report. J Endourol 2008; 22(3): 503– 506. doi: 10.1089/ end.2007.0385.

8. Rattner D, Kalloo A. ASGE/ SAGES Working Group on Natural Orifice Translumenal Endoscopic Surgery. October 2005. Surg Endosc 2006, 20(2): 329– 333.

9. Branco AW, Branco Filho AJ, Kondo W et al. Hybrid transvaginal nephrectomy. Eur Urol 2008; 53(6): 1290– 1294.

10. Decarli L, Zorron R, Branco A et al. Natural orifice translumenal endoscopic surgery (NOTES) transvaginal cholecystectomy in a morbidly obese patient. Obes Surg 2008; 18(7): 886– 889. doi: 10.1007/ s11695‑ 008‑ 9523‑ x.

11. Decarli LA, Zorron R, Branco A et al. New hybrid approach for NOTES transvaginal cholecystectomy: preliminary clinical experience. Surg Innov 2009; 16(2): 181– 186. doi: 10.1177/ 1553350609339375.

12. Horgan S, Cullen JP, Talamini MA et al. Natural orifice surgery: initial clinical experience. Surg Endosc 2009; 23(7): 1512– 1518. doi: 10.1007/ s00464‑ 009‑ 0428‑ 0.

13. Kaouk JH, Haber GP, Goel RK et al. Pure natural orifice translumenal endoscopic surgery (NOTES) transvaginal nephrectomy. Eur Urol 2010; 57(4): 723– 726. doi: 10.1016/ j.eururo.2009.10.027.

14. Nepple KG, Kallogjeri D, Bhayani SB. Benchtop evaluation of pressure barrier insufflator and standard insufflator systems. Surg Endosc 2013; 27(1): 333– 338. doi: 10.1007/ s00464‑ 012‑ 2434‑ x.

15. Herati AS, Andonian S, Rais– Bahrami S et al. Use of the valveless trocar system reduces carbon dioxide absorption during laparoscopy when compared with standard trocars. Urology 2011; 77(5): 1126– 1132. doi: 10.1016/ j.urology.2010.06.052.

16. Horstmann M, Horton K, Kurz M et al. Prospective comparison between the AirSeal® System valve- less Trocar and a standard Versaport™ Plus V2 Trocar in robotic– assisted radical prostatectomy. J Endourol 2013; 27(5): 579– 582. doi: 10.1089/ end.2012.0632.

17. Pryor AD, Tushar JR, DiBernardo LR. Single‑port cholecystectomy with the TransEnterix SPIDER: simple and safe. Surg Endosc 2010; 24(4): 917– 923. doi: 10.1007/ s00464‑ 009‑ 0695‑ 9.

18. Villamizar N, Pryor AD. SPIDER and flexible laparoscopy: the next frontier in abdominal surgery. Surg Technol Int 2010; 20: 53– 58.

19. Haber GP, Autorino R, Laydner H et al. SPIDER surgical system for urologic procedures with laparoendoscopic single‑site surgery: from initial laboratory experience to first clinical application. Eur Urol 2012; 61(2): 415– 422. doi: 10.1016/ j.eur­uro.2010.12.033.

20. Salas N, Gorin MA, Gorbatiy V et al. Laparo­endoscopic single site nephrectomy with the SPIDER surgical system: engineering advancements tested in a porcine model. J Endourol 2011; 25(5): 739– 742. doi: 10.1089/ end.2010.0608.

21. Raman JD, Scott DJ, Cadeddu JA. Role of magnetic anchors during laparoendoscopic single site surgery and NOTES. J Endourol 2009; 23(5): 781– 786. doi: 10.1089/ end.2008.0033.

22. Best SL, Cadeddu JA. Development of magnetic anchoring and guidance systems for minimally invasive surgery. Indian J Urol 2010; 26(3): 418– 422. doi: 10.4103/ 0970‑ 1591.70585.

23. Gettman MT, Lotan Y, Napper CA et al. Transvaginal laparoscopic nephrectomy: development and feasibility in the porcine model. Urology 2002; 59(3): 446– 450.

24. Bessler M, Gumbs AA, Milone L et al. Video. Pure natural orifice transluminal endoscopic surgery (NOTES) cholecystectomy. Surg Endosc 2010; 24(9): 2316– 2317. doi: 10.1007/ s00464‑ 010‑ 0918‑ 0.

25. Scott DJ, Tang SJ, Fernandez R et al. Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surg Endosc 2007; 21(12): 2308– 2316.

26. Clayman RV, Box GN, Abraham JB et al. Rapid communication: transvaginal single‑port NOTES nephrectomy: initial laboratory experience. J Endourol 2007; 21(6): 640– 644.

27. Gettman MT, Blute ML. Transvesical peritoneoscopy: initial clinical evaluation of the bladder as a portal for natural orifice translumenal endoscopic surgery. Mayo Clin Proc 2007; 82(7): 843– 845.

28. Lima E, Autorino R, Correia- Pinto J. Transvesical endoscopic port in abdominal surgery: an updated perspective. Curr Urol Rep 2010; 11(2): 128– 131. doi: 10.1007/ s11934‑ 010‑ 0097‑ 5.

29. Box GN, Bessler M, Clayman RV. Transvaginal access: current experience and potential implications for urologic applications. J Endourol 2009; 23(5): 753– 757. doi: 10.1089/ end.2009.0150.

30. Thompson CC, Ryou M, Soper NJ et al. Evaluation of a manually driven, multitasking platform for complex endoluminal and natural orifice transluminal endoscopic surgery applications (with video). Gastrointest Endosc 2009; 70(1): 121– 125. doi: 10.1016/ j.gie.2008.11.007.

31. Autorino R, Cadeddu JA, Desai MM et al. Laparoendoscopic single‑site and natural orifice transluminal endoscopic surgery in urology: a critical analysis of the literature. Eur Urol 2011; 59(1): 26– 45. doi: 10.1016/ j.eururo.2010.08.030.

32. Kaouk JH, Goel RK, Haber GP et al. Robotic single‑port transumbilical surgery in humans: initial report. BJU Int 2009; 103(3): 366– 369. doi: 10.1111// j.1464‑ 410X.2008.07949.x.

33. Autorino R, Kaouk JH, Stolzenburg JU et al. Current status and future directions of robotic single‑site surgery: a systematic review. Eur Urol 2013; 63(2): 266– 280. doi: 10.1016/ j.eururo.2012.08.028.

34. Joseph RA, Goh AC, Cuevas SP et al. „Chopstick“ surgery: a novel technique improves surgeon performance and eliminates arm collision in robotic single‑incision laparoscopic surgery. Surg Endosc 2010; 24(6): 1331– 1335. doi: 10.1007/ s00464‑ 009‑ 0769‑ 8.

35. Tang B, Hou S, Cuschieri SA. Ergonomics of and technologies for single‑port lapaxroscopic ­surgery. Minim Invasive Ther Allied Technol 2012; 21(1): 46– 54. doi: 10.3109/ 13645706.2011.627924.

36. Sánchez LA, Petroni G, Piccigallo M et al. Real- time control and evaluation of a teleoperated miniature arm for Single Port Laparoscopy. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 7049– 7053. doi: 10.1109/ IEMBS.2011.6091782.

37. Lehman AC, Wood NA, Farritor S et al. Dexterous miniature robot for advanced minimally invasive surgery. Surg Endosc 2011; 25(1): 119– 123. doi: 10.1007/ s00464‑ 010‑ 1143‑ 6.

38. Dolghi O, Strabala KW, Wortman TD et al. Miniature in vivo robot for laparoendoscopic single‑site surgery. Surg Endosc 2011; 25(10): 3453– 3458. doi: 10.1007/ s00464‑ 011‑ 1687‑ 0.

39. Wortman TD, Strabala KW, Lehman AC et al. Laparoendoscopic single‑site surgery using a multi‑functional miniature in vivo robot. Int J Med Robot 2011; 7(1): 17– 21. doi: 10.1002/rcs.362.

Labels
Paediatric urologist Urology
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account