#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Leukemic stem cell surface markers in chronic myeloid leukaemia


Authors: D. Smitalová 1;  I. Ježíšková 1;  J. Mayer 1,2;  D. Žáčková 1;  M. Čulen 1
Authors‘ workplace: Interní hematologická a onkologická klinika LF MU a FN Brno 1;  Středoevropský technologický institut, MU, Brno 2
Published in: Transfuze Hematol. dnes,29, 2023, No. 1, p. 9-15.
Category: Review/Educational Papers
doi: https://doi.org/10.48095/cctahd2023prolekare.cz2

Overview

Treatment with tyrosine kinase inhibitors has revolutionized the management of CML, but only ~ 40% of patients achieve treatment-free remission. One of the underlying causes is persistent leukemic stem cells (LSCs) which are resistant to therapy and survive in quiescent form in the bone marrow niche. This LSC pool can serve as a source of CML reoccurrence and mutation acquisition, which can lead to treatment resistance and disease relapse. Thus, the ideal therapy goal is complete disease eradication including the LSCs. However, specific therapeutic targets are lacking, and even monitoring of these rare cells is problematic. Therefore, there has been intense research to find specific LSC markers which would allow distinction of LSCs from normal stem cells, description of LSC bio­logy, and identification of potential therapeutic targets. This article reviews recent studies and clinical trials involving the problems of surface LSC markers in CML.

Keywords:

chronic myeloid leukaemia – leukemic stem cells – leukemic stem cell markers


Sources

1. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020; 34 (4): 966–984.

2. Höglund M, Sandin F, Simonsson B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol. 2015; 94 (2): 241–247.

3. Hoffmann VS, Baccarani M, Hasford J, et al. Treatment and outcome of 2904 CML patients from the EUTOS population-based registry. Leukemia. 2017; 31 (3): 593–601.

4. Nowell P, Hungerford D. A minute chromosome in human chronic granulocytic leukemia. Science. 1960; 142: 1497–1499.

5. Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J. 1990; 9 (4): 1069–1078.

6. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci. 1990; 87 (17).

7. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature. 1990; 344 (6263): 251–253.

8. Deininger MWN, Goldman JM, Melo J V, et al. The molecular bio­logy of chronic myeloid leukemia. Blood. 2000; 96 (10): 3343–3356.

9. Holyoake T, Jiang X, Eaves C, Eaves A. Isolation of a Highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood. 1999; 94 (6): 2056–2064.

10. Quintás-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009; 16 (2): 122–131.

11. Čičátková P, Žáčková D. Vysazování inhibitorů tyrozinkináz u pacientů s chronickou myeloidní leukemií ve studiích a klinické praxi. Transfuze Hematol Dnes. 2020; 26 (4): 279–291.

12. Etienne G, Guilhot J, Rea D, et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol. 2017; 35 (3): 298–305.

13. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018; 19 (6): 747–757.

14. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013; 122 (4): 515–522.

15. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 2019; 6 (7): e375–e383.

16. Graham SM, Jørgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002; 99 (1): 319–325.

17. Lemoli RM, Salvestrini V, Bianchi E, et al. Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib. Blood. 2009; 114 (25): 5191–5200.

18. Valent P, Sadovnik I, Eisenwort G, et al. Immunotherapy-based targeting and elimination of leukemic stem cells in AML and CML. Int J Mol Sci. 2019; 20 (17).

19. Chomel J-C, Bonnet M-L, Sorel N, et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood. 2011; 118 (13): 3657–3660.

20. Hamilton A, Helgason GV, Schemionek M, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012; 119 (6): 1501–1510.

21. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017; 129 (12): 1595–1607.

22. Culen M, Borsky M, Nemethova V, et al. Quantitative assessment of the CD26+ leukemic stem cell compartment in chronic myeloid leukemia: Patient-subgroups, prognostic impact, and technical aspects. Oncotarget. 2016; 7 (22): 33016–33024.

23. Herrmann H, Sadovnik I, Cerny-reiterer S, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014; 123 (25): 3951–3962.

24. Bocchia M, Sicuranza A, Abruzzese E, et al. Residual peripheral blood CD26+ leukemic stem cells in chronic myeloid leukemia patients during TKI therapy and during treatment-free remission. Front Oncol. 2018; 8: 194.

25. Gorrell MD, Gysbers V, McCaughan GW. CD26: A multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol. 2001; 54 (3): 249–264.

26. Ali S, Huber M, Kollewe C, Bischoff SC, Falk W, Martin MU. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci U S A. 2007; 104 (47): 18660–18665.

27. Jaras M, Johnels P, Hansen N, et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci. 2010; 107 (37): 16280–16285.

28. Landberg N, Hansen N, Askmyr M, et al. IL1RAP expression as a measure of leukemic stem cell burden at dia­gnosis of chronic myeloid leukemia predicts therapy outcome. Leukemia. 2016; 30 (1): 253–257.

29. Zhao K, Yin LL, Zhao DM, et al. IL1RAP as a surface marker for leukemia stem cells is related to clinical phase of chronic myeloid leukemia patients. Int J Clin Exp Med. 2014; 7 (12): 4787–4798.

30. Mitchell K, Barreyro L, Todorova TI, et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med. 2018; 215 (6): 1709–1727.

31. Sadovnik I, Herrmann H, Eisenwort G, Blatt K. Expression of CD25 on leukemic stem cells in BCR-ABL1+ CML: Potential dia­gnostic value and functional implications. Exp Hematol. 2017; 51: 17–24.

32. Sadovnik I, Hoelbl-Kovacic A, Herrmann H, et al. Identification of CD25 as STAT5-dependent growth regulator of leukemic stem cells in Ph + CML. Clin Cancer Res. 2016; 22 (8): 2051–2061.

33. Landberg N, von Palffy S, Askmyr M, et al. CD36 defines primitive chronic myeloid leukemia cells less responsive to imatinib but vulnerable to antibody-based therapeutic targeting. Haematologica. 2018; 103 (3): 447–455.

34. Ye H, Adane B, Khan N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell. 2016; 19 (1): 23–37.

35. Kumar A, Bhanja A, Bhattacharyya J, Jaganathan BG. Multiple roles of CD90 in cancer. Tumour Biol. 2016; 37 (9): 11611–11622.

36. Kinstrie R, Horne GA, Morrison H, et al. CD93 is expressed on chronic myeloid leukemia stem cells and identifies a quiescent population which persists after tyrosine kinase inhibitor therapy. Leukemia. 2020; 34 (6): 1613–1625.

37. Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014; 506 (7488): 328–333.

38. Florian S, Sonneck K, Hauswirth AW, et al. Detection of molecular targets on the surface of CD34+/CD38- stem cells in various myeloid malignancies. Leuk Lymphoma. 2006; 47 (2): 207–222.

39. Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJM, et al. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia [Internet]. 2016; 30 (2): 439–446. Available from: http: //dx.doi.org/10.1038/leu.2015.252

40. Nievergall E, Ramshaw HS, Yong ASM, et al. Monoclonal antibody targeting of IL-3 receptor a with CSL362 effectively depletes CML progenitor and stem cells. Blood. 2014; 123 (8): 1218–1228.

41. Herrmann H, Sadovnik I, Eisenwort G, et al. Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv. 2020; 4 (20): 5118–5132.

42. Culen M, Romzova M, Smitalova D, Loja T, Mayer J. Multicolor immunophenotyping of candidate leukemic stem cell markers in CD34+CD38- chronic myeloid leukemia stem cells. Blood. 2019; 134 (Supplement_1): 2922–2922.

43. Romzova M, Smitalova D, Taus P, Mayer J, Culen M. High throughput immunophenotyping and expression profiling at single cell level reveal BCR-ABL1 dependent surface markers of chronic myeloid leukemia stem cells. Blood. 2019; 134 (Supplement_1): 2920–2920.

44. Warfvinge R, Geironson L, Sommarin MNE, et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood. 2017; 129 (17): 2384–2395.

45. Giustacchini A, Thongjuea S, Barkas N, et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med. 2017; 23 (6): 692–702.

46. Madhumathi J, Sridevi S, Verma RS. CD25 targeted therapy of chemotherapy resistant leukemic stem cells using DR5 specific TRAIL peptide. Stem Cell Res. 2017; 19: 65–75.

47. Bielekova B, Howard T, Packer AN, et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch Neurol. 2009; 66 (4): 483–489.

48. Willmann M, Sadovnik I, Eisenwort G, et al. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia. Exp Hematol. 2018; 57: 50-59.e6.

49. Hollande C, Boussier J, Ziai J, et al. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat Immunol. 2019; 20 (3): 257–264.

50. Herrmann H, Cerny-Reiterer S, Gleixner KV, et al. CD34+/CD38- stem cells in chronic myeloid leukemia express Siglec-3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin. Haematologica [Internet]. 2012 Feb [cited 2022 Apr 20]; 97 (2): 219–226. Available from: http: //www.ncbi.nlm.nih.gov/pubmed/21993666

51. Bao Y, Wang L, Xu Y, et al. Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner. Atherosclerosis. 2012; 223 (1): 152–159.

52. Geloen A, Helin L, Geeraert B, Malaud E, Holvoet P, Marguerie G. CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One. 2012; 7 (5): e37633.

53. Ikewaki N, Kulski JK, Inoko H. Regulation of CD93 cell surface expression by protein kinase C isoenzymes. Microbio­l Immunol. 2006; 50 (2): 93–103.

54. Riether C, Radpour R, Kallen NM, et al. Metoclopramide treatment blocks CD93-signaling-mediated self-renewal of chronic myeloid leukemia stem cells. Cell Rep. 2021; 34 (4): 108663.

55. Frolova O, Benito J, Brooks C, et al. SL-401 and SL-501, targeted therapeutics directed at the interleukin-3 receptor, inhibit the growth of leukaemic cells and stem cells in advanced phase chronic myeloid leukaemia. Br J Haematol. 2014; 166 (6): 862–874.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue 1

2023 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#