Polycystic ovary syndrome and diabetes mellitus


Authors: Jana Vrbíková
Authors‘ workplace: Oddělení klinické endokrinologie, Endokrinologický ústav, vedoucí oddělení MUDr. Marcela Dvořáková, Ph. D.
Published in: Prakt Gyn 2014; 18(3): 186-189
Category: Gynecology and Obstetrics: Review Article

Overview

Polycystic ovary syndrome (PCOS) is considered one of the most common endocrinopathies in women of childbearing age. 30 – 80 % of women suffering from PCOS are obese and obesity is often accompanied by hyperinsulinemia and insulin resistance, even independently of body mass index. Most of the published works have demonstrated an increased incidence of type 2 diabetes in women with PCOS. There is 2,89 times higher risk of developing gestational diabetes in women with PCOS comparing to control group. Therefore, it is recommended to perform oral glucose tolerance test. It is highly recommended to begin with lifestyle changes as the first step in treating obese woman with PCOS although there is lack of evidence from controlled trials. If impaired glucose tolerance does not improve, metformin is indicated, but there is lack of data on the use in pregnant women as a prevention of GDM development. PCOS occurs in up to 30% of women with type 1 diabetes and is associated with insulin therapy. The existing pilot studies have demonstrated that metformin is useful in therapy. The combined hormonal contraceptives with non-androgenic gestagens are applied in women who do not want to be pregnant.

Key words:
combined hormonal contraceptives – diabetes mellitus – gestagens – impaired glucose tolerance – metformin – oral glucose tolerance test – polycystic ovary syndrome


Sources

1. Carmina E, Lobo RA. Does metformin induce ovulation in normoandrogenic anovulatory women? Am J Obstet Gynecol 2004; 191(5): 1580–1584.

2. Chen X, Yang D, Mo Y et al. Prevalence of polycystic ovary syndrome in unselected women from southern China. Eur J Obstet Gynecol Reprod Biol 2008; 139(1): 59–64.

3. Yildiz BO, Bozdag G, Yapici Z et al. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod 2012; 27(10):3067–3073.

4. Zawadzki JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR et al. Polycystic ovary syndrome. Blackwell Scientific Publications: Boston 1992.

5. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004; 19(1):41–47.

6. Azziz R, Carmina E, Dewailly D et al. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 2006; 91(11): 4237–4245.

7. Goodarzi MO, Dumesic DA, Chazenbalk G et al. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 2011; 7(4): 219–231.

8. Barber TM and Franks S. The link between polycystic ovary syndrome and both Type 1 and Type 2 diabetes mellitus: what do we know today? Womens Health (Lond Engl) 2012; 8(2): 147–154.

9. Palioura E and Diamanti-Kandarakis E. Industrial endocrine disruptors and polycystic ovary syndrome. J Endocrinol Invest 2013; 36(11): 1105–1111.

10. Diamanti-Kandarakis E and Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33(6): 981–1030.

11. Vrbikova J and Hainer V. Obesity and polycystic ovary syndrome. Obes Facts 2009; 2(1): 26–35.

12. Ciampelli M, Fulghesu AM, Cucinelli F et al. Heterogeneity in beta cell activity, hepatic insulin clearance and peripheral insulin sensitivity in women with polycystic ovary syndrome. Hum Reprod 1997; 12(9): 1897–1901.

13. Ovesen P, Moller J, Ingerslev HJ, et al. Normal basal and insulin-stimulated fuel metabolism in lean women with the polycystic ovary syndrome. J Clin Endocrinol Metab 1993; 77(6): 1636–1640.

14. Vrbikova J, Cibula D, Dvorakova K et al. Insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89(6): 2942–2945.

15. Ehrmann DA, Sturis J, Byrne MM et al. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 96(1): 520–527.

16. Vrbikova J, Bendlova B, Hill M et al. Insulin Sensitivity and beta-Cell Function in Women With Polycystic Ovary Syndrome. Diabetes Care 2002; 25(7): 1217–1222.

17. Burghen GA, Givens J R and Kitabchi AE. Correlation of hyperandrogenism with hyperinsulinism in polycystic ovarian disease. J Clin Endocrinol Metab 1980; 50(1): 113–116.

18. Vrbikova J, Fanta M, Cibula D et al. Impaired glucose metabolism in women with polycystic ovary syndrome. Gynecol Obstet Invest 2009; 68(3): 186–190.

19. Moran LJ, Misso ML, Wild RA et al. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update 2010; 16(4): 347–363.

20. Salley KE, Wickham EP, Cheang KI et al. Glucose intolerance in polycystic ovary syndrome--a position statement of the Androgen Excess Society. J Clin Endocrinol Metab 2007; 92(12): 4546–4556.

21. Legro RS, Arslanian SA, Ehrmann DA et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2013; 98(12): 4565–4592.

22. Pesant MH and Baillargeon JP. Clinically useful predictors of conversion to abnormal glucose tolerance in women with polycystic ovary syndrome. Fertil Steril 2011; 95(1): 210–215.

23. Velling Magnussen L, Mumm H, Andersen M et al. Hemoglobin A1c as a tool for the diagnosis of type 2 diabetes in 208 premenopausal women with polycystic ovary syndrome. Fertil Steril 2011; 96(5): 1275–1280.

24. Legro RS, Gnatuk CL, Kunselman AR et al. Changes in glucose tolerance over time in women with polycystic ovary syndrome: a controlled study. J Clin Endocrinol Metab 2005; 90(6): 3236–3242.

25. Toulis KA, Goulis DG, Kolibianakis EM et al. Risk of gestational diabetes mellitus in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Fertil Steril Fertil Steril 2009; 92(2): 667–677.

26. Kjerulff LE, Sanchez-Ramos L and Duffy D. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis. Am J Obstet Gynecol 2011; 204(6): 558 e1-e6. Dostupné z DOI: <http://doi: 10.1016/j.ajog.2011.03.021>.

27. Moran LJ, Hutchison K, Norman R J et al. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2011; (2): CD007506. Update in Cochrane Database Syst Rev 2011; (7):CD007506. Dostupné z DOI: <http://doi: 10.1002/14651858.CD007506.pub3>.

28. Gillies CL, Lambert PC, Abrams KR et al. Different strategies for screening and prevention of type 2 diabetes in adults: cost effectiveness analysis. Bmj 2008; 336(7654): 1180–1185.

29. Codner E and Escobar-Morreale HF. Clinical review: Hyperandrogenism and polycystic ovary syndrome in women with type 1 diabetes mellitus. J Clin Endocrinol Metab 2007; 92(4): 1209–1216.

30. Amato MC, Guarnotta V, Ciresi A et al. No phenotypic differences for polycystic ovary syndrome (PCOS) between women with and without type 1 diabetes mellitus. J Clin Endocrinol Metab 2014; 99(1): 203–211.

31. Codner E, Merino PM and Tena-Sempere M. Female reproduction and type 1 diabetes: from mechanisms to clinical findings. Hum Reprod Update 2012; 18(5): 568–585.

Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicine
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account