Obesity treatment in patients both with and without diabetes: current options and perspectives


Authors: Martin Haluzík 1,2,3;  Viktorie Hrádková 1;  Michaela Kudláčková 1;  Iva Jakubíková 1
Authors‘ workplace: Centrum diabetologie IKEM, Praha 1;  Ústav lékařské biochemie a laboratorní diagnostiky 1. LF UK a VFN v Praze 2;  Endokrinologický ústav, Praha 3
Published in: Čas. Lék. čes. 2020; 159: 136-140
Category: Review Article

Overview

Increasing prevalence of obesity and its complications in practically all developed countries worldwide is one of the most cardinal problems of current healthcare. Obesity is an important risk factor for the development of type 2 diabetes mellitus and it is closely interconnected with arterial hypertension, dyslipidemia and other diseases commonly referred to as metabolic syndrome or insulin resistance syndrome. Overall, this combination of diseases markedly increases risk of cardiovascular morbidity and mortality. In this paper, we provide a review of current possibilities of pharmacological modulation of body weight in patients with obesity both with and without diabetes. We also briefly mention the treatment possibilities using bariatric surgery and endoscopy, and discuss the perspectives of pharmacological modulation of body weight in patients with diabetes in the context of ongoing research programmes.

Keywords:

diabetes – obesity – bariatric surgery – gliflozins – pharmacotherapy – hypoglycemia – GLP-1 receptor agonists – endoscopic treatment


Sources
  1. O'Rahilly S. Science, medicine, and the future. Non-insulin dependent diabetes mellitus: the gathering storm. BMJ 1997; 314: 955–959.
  2. Reaven G. Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 2002; 106: 286–288.
  3. Reaven G, Abbasi F, McLaughlin T. Obesity, insulin resistance, and cardiovascular disease. Recent Prog Horm Res 2004; 59: 207–223.
  4. Despres JP. Cardiovascular disease under the influence of excess visceral fat. Crit Pathw Cardiol 2007; 6: 51–59.
  5. Dolinková M, Dostalová I, Lacinová Z et al. The endocrine profile of subcutaneous and visceral adipose tissue of obese patients. Mol Cell Endocrinol 2008; 291: 63–70.
  6. Bluher M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 2009; 117: 241–250.
  7. Melin EO, Thunander M, Svensson R et al. Depression, obesity, and smoking were independently associated with inadequate glycemic control in patients with type 1 diabetes. Eur J Endocrinol 2013; 168: 861–869.
  8. Pi-Sunyer X, Blackburn G, Brancati FL et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the LOOK AHEAD trial. Diabetes Care 2007; 30: 1374–1383.
  9. Sjöström L, Narbro K, Sjöström CD et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741–752.
  10. Look ARG, Wing RR, Bolin P et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145–154.
  11. Borghouts LB, Keizer HA. Exercise and insulin sensitivity: a review. Int J Sports Med 2000; 21: 1–12.
  12. Delahanty LM, Halford BN. The role of diet behaviors in achieving improved glycemic control in intensively treated patients in the Diabetes Control and Complications Trial. Diabetes Care 1993; 16: 1453–1458.
  13. Kahleová H, Matoulek M, Malinská H et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with type 2 diabetes. Diabet Med 2011; 28: 549–559.
  14. Kahleová H, Hrachovinová T, Hill M, Pelikánová T. Vegetarian diet in type 2 diabetes – improvement in quality of life, mood and eating behaviour. Diabet Med 2013; 30: 127–129.
  15. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017; 39: 46–58.
  16. Dixon JB, le Roux CW, Rubino F, Zimmet P. Bariatric surgery for type 2 diabetes. Lancet 2012; 379: 2300–2311.
  17. Schauer PR, Bhatt DL, Kirwan JP et al. Bariatric surgery versus intensive medical therapy for diabetes – 5-year outcomes. N Engl J Med 2017; 376: 641–651.
  18. Gys B, Plaeke P, Lamme B et al. Endoscopic gastric plication for morbid obesity: a systematic review and meta-analysis of published data over time. Obes Surg 2019; 29: 3021–3029.
  19. Fried M. Bariatrická a metabolická chirurgie. Mladá fronta, Praha, 2011.
  20. Maetzel A, Ruof J, Covington M, Wolf A. Economic evaluation of orlistat in overweight and obese patients with type 2 diabetes mellitus. Pharmacoeconomics 2003; 21: 501–512.
  21. Chiasson JL, Brindisi MC, Rabasa-Lhoret R. The prevention of type 2 diabetes: what is the evidence? Minerva Endocrinol 2005; 30: 179–191.
  22. Bray GA, Ryan DH. Update on obesity pharmacotherapy. Ann NY Acad Sci 2014; 1311: 1–13.
  23. Saunders KH, Igel LI, Aronne LJ. An update on naltrexone/bupropion extended-release in the treatment of obesity. Expert Opin Pharmacother 2016; 17: 2235–2242.
  24. Wohl P, Krušinová E, Kratochvílová S a kol. Inzulinová rezistence u diabetiků – metabolická inflexibilita. DMEV 2005; 8: 174–178.
  25. Lean ME, Leslie WS, Barnes AC et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 2018; 391: 541–551.
  26. Haluzík M a kol. Praktická léčba diabetu. Mladá fronta, Praha, 2009.
  27. Ali S, Fonseca V. Overview of metformin: special focus on metformin extended release. Expert Opin Pharmacother 2012; 13: 1797–1805.
  28. Singla RK, Singh R, Dubey AK. Important aspects of post-prandial antidiabetic drug, acarbose. Curr Top Med Chem 2016; 16: 2625–2633.
  29. Edridge CL, Dunkley AJ, Bodicoat DH et al. Prevalence and incidence of hypoglycaemia in 532,542 people with type 2 diabetes on oral therapies and insulin: a systematic review and meta-analysis of population-based studies. PLoS ONE 2015; 10: e0126427.
  30. Blaschke F, Spanheimer R, Khan M, Law RE. Vascular effects of TZDs: new implications. Vascul Pharmacol 2006; 45: 3–18.
  31. Young LH, Viscoli CM, Curtis JP et al. Cardiac outcomes after ischemic stroke or TIA: effects of pioglitazone in patients with insulin resistance without diabetes. Circulation 2017; 135: 1882–1893.
  32. Kernan WN, Viscoli CM, Furie KL et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med 2016; 374: 1321–1331.
  33. Aas AM, Ohrvik J, Malmberg K et al. Insulin-induced weight gain and cardiovascular events in patients with type 2 diabetes. A report from the DIGAMI 2 study. Diabetes Obes Metab 2009; 11: 323–329.
  34. Ampudia-Blasco FJ, Rossetti P, Ascaso JF. Basal plus basal-bolus approach in type 2 diabetes. Diabetes Technol Ther 2011; 13 (Suppl. 1): S75–S83.
  35. Scheen AJ. Safety of dipeptidyl peptidase-4 inhibitors for treating type 2 diabetes. Expert Opin Drug Saf 2015; 14: 505–524.
  36. Potts JE, Gray LJ, Brady EM et al. The effect of glucagon-like peptide 1 receptor agonists on weight loss in type 2 diabetes: a systematic review and mixed treatment comparison meta-analysis. PLoS ONE 2015; 10: e0126769.
  37. Aaboe K, Krarup T, Madsbad S, Holst JJ. GLP-1: physiological effects and potential therapeutic applications. Diabetes Obes Metab 2008; 10: 994–1003.
  38. Haluzík M, Svačina Š. Inkretinová léčba diabetu. Mladá fronta, Praha, 2010.
  39. Htike ZZ, Zaccardi F, Papamargaritis D et al. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab 2017; 19: 524–536.
  40. Deacon C. F, Mannucci E, Ahren B. Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes – a review and meta-analysis. Diabetes Obes Metab 2012; 14: 762–767.
  41. Madsbad S, Kielgast U, Asmar M et al. An overview of once-weekly glucagon-like peptide-1 receptor agonists – available efficacy and safety data and perspectives for the future. Diabetes Obes Metab 2011; 13: 394–407.
  42. Lingvay I, Desouza CV, Lalic KS et al. A 26-week randomized controlled trial of semaglutide once daily versus liraglutide and placebo in patients with type 2 diabetes suboptimally controlled on diet and exercise with or without metformin. Diabetes Care 2018; 41: 1926–1937.
  43. Aroda VR, Rosenstock J, Terauchi Y et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care 2019; 42: 1724–1732.
  44. Marso SP, Daniels GH, Brown-Frandsen K et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311–322.
  45. Pfeffer MA, Claggett B, Diaz R et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373: 2247–2257.
  46. Rodbard HW, Bode BW, Harris SB et al. Safety and efficacy of insulin degludec/liraglutide (IDegLira) added to sulphonylurea alone or to sulphonylurea and metformin in insulin-naive people with type 2 diabetes: the DUAL IV trial. Diabet Med 2017; 34: 189–196.
  47. Gough SC, Bode B, Woo V et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes. Lancet Diabetes Endocrinol 2014; 2: 885–893.
  48. Aroda VR, Rosenstock J, Wysham C et al. Efficacy and safety of LixiLan, a titratable fixed-ratio combination of insulin glargine plus lixisenatide in type 2 diabetes inadequately controlled on basal insulin and metformin: the LixiLan-L randomized trial. Diabetes Care 2016; 39: 1972–1980.
  49. Abdul-Ghani MA, DeFronzo RA. Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract 2008; 14: 782–790.
  50. Anderson SL, Marrs JC. Dapagliflozin for the treatment of type 2 diabetes. Ann Pharmacother 2012; 46: 590–598.
  51. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117–2128.
  52. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377: 644–657.
Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management

Article was published in

Journal of Czech Physicians

Issue 3-4

2020 Issue 3-4

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account