#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Význam urokinázy a jejích inhibitorů pro invazi a metastazování zhoubných nádorů


Authors: J. Halámková 1;  I. Kiss 1;  J. Tomášek 1;  Z. Pavlovský 2;  Š. Tuček 1;  M. Penka 3
Authors‘ workplace: Klinika komplexní onkologické péče Lékařské fakulty MU a MOÚ Brno, přednosta prof. MUDr. Rostislav Vyzula, CSc. 1;  Ústav patologie Lékařské fakulty MU a FN Brno, pracoviště Bohunice, přednosta doc. MUDr. Josef Feit, CSc. 2;  Oddělení klinické hematologie FN Brno, přednosta prof. MUDr. Miroslav Penka, CSc. 3
Published in: Vnitř Lék 2012; 58(2): 129-134
Category: Reviews

Overview

Fibrinolýza pomáhá regulovat hemostázu, a zabraňuje tak vytvoření neadekvátně velkého trombu, který by mohl omezit průtok krve cévním řečištěm. Hlavním enzymem podílejícím se na fibrinolýze je plazmin. Tkáňový aktivátor plazminogenu (tPA) a urokináza (uPA) jsou agens konvertující plazminogen na aktivní plazmin, tvoří společně s receptorem pro urokinázu (uPAR) a inhibitory urokinázy (PAI 1, PAI 2, PAI 3 a protease nexin) plazminogen aktivátor systém (PAS), který je mimo jiné součástí metastatické kaskády a významnou měrou se podílí na invazivním růstu a angiogenezi maligních nádorů. Pro samotnou fibrinolýzu má zásadní význam tPA, uPA se pak podílí na degradaci tkání jak při fyziologických, tak i patologických pochodech. Receptor pro uPA – uPAR je navázán na buněčnou membránu prostřednictvím glykosylfosfatidylinositolu. Navázáním uPA na uPAR dochází k aktivaci proteintyrosinkináz, proteinkinázy C a MAP-kinázy. Současně byla popsána i přímá signální cesta Jak/STAT kaskádou s využitím signální transdukce Scr-like proteintyrosinkinázy. Exprese uPAR je regulována řadou růstových faktorů, např. EGF, bFGF a HGF. Zdá se, že jednotlivé faktory PAS se podílí na procesu malignizace nádorových onemocnění. Na otázku, do jaké míry je jejich vliv zásadní u konkrétních malignit, by měl odpovědět další výzkum. V článku autoři předkládají souhrn poznatků o interakci fibrinolýzy a nádorového procesu, speciálně o vlivu urokinázy a dalších aktivátorů a jejich inhibitorů na metastazování maligních tumorů. Text obsahuje informace o faktorech, jejichž zavedení do praxe je zatím předmětem četných diskuzí, nicméně do budoucna by jednotlivé faktory PAS mohly hrát významnou úlohu při plánování strategie léčby a zároveň by se mohly stát i terčem cílené terapie.

Klíčová slova:
plazminogen aktivátor systém – uPA – uPAR – PAI 1 – PAI 2


Fibrinolýza pomáhá regulovat hemostázu, a zabraňuje tak vytvoření neadekvátně velkého trombu, který by mohl omezit průtok krve cévním řečištěm, dochází při ní k degradaci fibrinu na fibrinové monomery. Hlavním enzymem podílejícím se na fibrinolýze je plazmin, který je produkován v inaktivní formě jako plazminogen v játrech, jeho poločas rozpadu je kolem 2 dnů, ale v závislosti na aktivaci fibrinolytického systému může být i výrazně kratší. Tkáňový aktivátor plazminogenu (tPA) a urokináza (uPA) jsou agens konvertující plazminogen na aktivní plazmin (obr. 1).

Zjednodušené schéma fibrinolýzy.
Image 1. Zjednodušené schéma fibrinolýzy.

Tkáňový aktivátor plazminogenu (tPA) je serinovou proteinázou, která je přítomna v cévních endoteliích a v buňkách téměř všech parenchymatózních orgánů, zvláště plic, ledvin, prostaty a placenty, odkud se uvolňuje při poranění (např. operace). V plazmě cirkuluje společně v komplexu s inhibitorem urokinázy 1 (PAI 1), méně než 5 % je ho ve volné (aktivní) formě [1]. Urokináza (uPA) je serinová proteináza, která hraje zásadní roli v aktivaci plazminogenu na plazmin, který patří mezi serinové proteinázy, a současně se podílí na aktivaci matrixmetaloproteináz, latentních elastáz, růstových faktorů a cytokinů, které se účastní degradace elementů extracelulární matrix, jako jsou fibrin a laminin. Je syntetizována z proenzymu prourokinázy (pro-uPA nebo sc-uPA). Pro-uPA je aktivována prostřednictvím řady proteináz, zahrnující např. plazmin, katepsin B/L, kallikrein, trypsin-like enzymy, thermolysin, NGF-γ, na enzymaticky aktivní vysokomolekulární formu uPA (HMW). HMW-uPA je dále degradována na nízkomolekulární enzymaticky aktivní formu uPA (LMW) a enzymaticky inaktivní amino-terminální fragment (ATF). ATF epitop v sobě zahrnuje growth-factor-like doménu (GFD). GFD umožňuje vazbu uPA na uPAR [2]. Plazmin se podílí též na aktivaci neaktivních matrixmetaloproteináz. Společně se svým receptorem (uPAR), tkáňovým aktivátorem (tPA, který je syntetizován z proenzymu pro-tPA nebo sc-tPA) a inhibitory urokinázy (PAI 1, PAI 2, PAI 3 – identický s inhibitorem proteinu C a protease nexin) [1] tvoří plazminogen aktivátor systém (PAS), který je součástí metastatické kaskády a významnou měrou se podílí na invazivním růstu a angio­genezi maligních nádorů [2]. V nedávné době byla navržena nová nomenklatura, v níž byl PAI 1 označen jako serpin E1, PAI 2 serpin B2 a PAI 3 serpin A5 [3].

uPA hraje zásadní roli v degradaci tkání při fyziologických i patologických pochodech, na rozdíl od tPA, který má zásadní význam pro fibrinolýzu. PAI 1, který tvoří 60 % ze všech inhibitorů aktivátorů plazminogenu, inhibuje jak uPA, tak tPA. Zajímavostí je, že byla zjištěna nízká exprese uPA a vysoká tPA u normální tkáně střeva, na rozdíl od kolorektálních karcinomů, kde je aktivita tPA nízká oproti vysoké aktivitě uPA [4].

uPAR je membránový glykoprotein, receptor pro uPA, označovaný také jako CD 87. Navázáním uPA k uPAR dochází k aktivaci signální transdukce, jejímž výsledkem je stimulace buněčné proliferace, modulace adheze a zvýšení buněčné migrace (obr. 2) [5]. Nejvýznamnější specifické inhibitory jsou PAI 1 a PAI 2, které reagují s receptorem uPA, ale ne s pro-uPA, oba náleží do rodiny serpinů (serine protease inhibitor super-family) [6].

Multifunkční potenciál uPA. Upraveno podle [16].
Image 2. Multifunkční potenciál uPA. Upraveno podle [16].

PAI 1 je jednořetězcový glykoprotein sestávající z 379 aminokyselin, jeho gen je lokalizován na 7. chromozomu a je tvořen převážně v hladké svalovině cév, v megakaryocytech, endoteliích, granulocytech, monocytech, makrofázích a nádorových buňkách. Jedná se o serpin, přítomný v plazmě a v α-granulích trombocytů, má schopnost vazby na vitronectin [7–9]. Komplex vitronectin-PAI 1 má delší poločas rozpadu a inhibuje migraci hladkých svalových buněk blokádou αvβ3 integrinu k vitronectinu [10,11]. Kromě αvβ3 integrinu se váže i na další ze skupiny integrinů jako αvβ1, αvβ5, αIIbβ3 a α8β1 [12]. Interakcí PAI 1 s uPA/uPAR komplexem vede k internalizaci této trojice, která stimuluje buněčnou proliferaci, naproti tomu komplex PAI 2/uPA/uPAR není internalizován, ale zpracován na buněčném povrchu [13]. PAI 1 je nejúčinnějším inhibitorem uPA a tPA. Navázání PAI 1 na uPAR vázaného k uPA vede k internalizaci uPA komplexu prostřednictvím endocytických receptorů low density lipoprotein (LDL) receptorové rodiny, jako je protein příbuzný LDL receptoru (LDL receptor related protein – LRP). Navázání uPA k PAI 1 přeruší normální PAI 1-vitronectin interakci a zahájí konformační změny v PAI 1, které umožňují expozici skrytému vysoce afinnímu vazebnému místu na LRP [14]. Obvykle je plazmatická hladina PAI 1 nízká a jeho vysoká hladina je asociována s různými typy onemocnění, např. vaskulárními chorobami či maligními tumory.

PAI 2, známý také jako placentární plazminogen aktivátor inhibitor, existuje ve 2 formách: v intracelulární ne­glykosylované a extracelulární glykosylované formě. Gen pro PAI 2 se nachází na 18. chromozomu a inhibuje pouze uPA [15]. PAI 2 se vyskytuje v trofoblastickém epitelu a je syntetizován leukocyty. Donedávna mu bylo jako hlavní úloha, podle některých autorů, přisuzováno ovlivnění koagulace u těhotných. Při jeho hlubším zkoumání však vychází najevo jeho nemálo významná role v procesu růstu maligních tumorů (obr. 3).

Imunohistochemické barvení tkáně kolorektálního karcinomu – nádorové buňky jsou pozitivní na PAI 2 (zvětšeno 200krát).
Image 3. Imunohistochemické barvení tkáně kolorektálního karcinomu – nádorové buňky jsou pozitivní na PAI 2 (zvětšeno 200krát).

U nádorových buněk je tedy působení PAI 1 a PAI 2 odrazem jejich rozdílných fyziologických biologických funkcí. PAI 1 tedy navázáním komplexu uPA/uPAR vede k stimulaci růstu a současně k redistribuci uPAR na povrchu buněk zajišťující zpětně invazivitu tumorózní tkáně. Na druhé straně PAI 2 by měl být tím pravý inhibitorem PAS, nejen inhibicí aktivity urokinázy, ale i zabráněním migrace tumorózních buněk blokádou uPAR [16].

PAI 3 má nízkou afinitu k uPA i tPA, je označován také jako inhibitor proteinu C. Inhibuje trombin, faktor Xa, faktor XIa a komplex trombin-trombomodulin. Je exprimován v játrech, varlatech, ledvinách a pankreatu. Role PAI 3 a protease nexinu zatím není zcela objasněná [1]. Na experimentech s null PAI 3 myšmi bylo zjištěno, že u nich nejsou abnormality v koagulaci a v hemostáze, ale u myších samců byla zjištěna infertilita. Předpokládá se tedy, že by PAI 3 mohl mít význam ve spermatogenezi [17].

In vivo je to hlavně rovnováha aktivátorů a jejich inhibitorů, která určuje degradaci fibrinu a extracelulární matrix působenou plazminem [15].

Invazivita a metastazování maligních tumorů

V rámci metastatické kaskády dochází k uvolnění buňky z primárního ložiska, prostupu přes bazální membránu a extracelulární matrix do cévního systému, kterým se dostává na stanovené místo, kde opět prostoupí bazální membránou a extracelulární matrix a založí vzdálenou metastázu. Základním procesem je tedy buněčná adheze zprostředkovaná integriny, kadheriny, kateniny, selektiny, imunoglobuliny a dalšími adhezivními molekulami a extracelulárními proteolytickými enzymy, jako jsou např. matrixmetaloproteinázy, cysteinproteinázy (např. katepsin B, L a D) a serinproteinázy (např. urokináza). Kromě proteolytického efektu byla prokázána účast urokinázy i v procesu angiogeneze, jíž se účastní svou katalytickou funkcí, ale i parakrinně//autokrinním efektem na buněčnou migraci [18]. To bylo potvrzeno in vitro experimentálními modely [19]. I když přesný mechanizmus zatím není znám, je jisté, že uPAR neslouží pouze k ukotvení uPA, ale podílí se na signální kaskádě. Jakým způsobem však zatím není jasné, neboť uPAR je GPI (glykosylfosfatidyl inositol) kotveným proteinem a nemá cytoplazmatickou doménu, předpokládá se tedy využití transmembránových integrinů [20]. Potenciálními induktory angiogeneze jsou také fibrin, fibronektin a jejich degradační produkty, které mají chemotaktický efekt na endoteliální buňky.

Plazminogen aktivátor systém a jeho význam v invazi, metastazování a angiogenezi

Lze říci, že plazminogenem vázané molekuly hrají zásadní roli v invazi a metastazování tumoru. Aktivace uPA je regulována prostřednictvím urokinázového receptoru (uPAR). Navázání uPA na jeho receptor uPAR akceleruje aktivaci uPA z inaktivního proenzymu pro-uPA, jehož konverze je katalyzována plazminem, koagulačním faktorem XIIa a katepsinem B a L. Interakce uPAR s extracelulární matrix se děje prostřednictvím vitronectinu [21], tato interakce je zesílena navázáním uPA a snížena prostřednictvím PAI 1. Komplex uPA/uPAR má vysokou afinitu k vitronectinu, a to především k jeho doméně označované jako somatomedin B. PAI 1 je schopen vazbu uPAR k somatomedin B doméně inhibovat. Vitronectin je vázán s fibrinem, podílí se na migraci nádorových buněk ve fibrinové matrix, a tím na lokální invazi tumoru a vzdáleném metastazování. Základním procesem invazivního růstu nádoru je totiž degradace bazální membrány a proteinů extracelulární matrix, což umožňuje migraci nádorových buněk. uPAR je navázán na buněčnou membránu prostřednictvím glykosylfosfatidyl inositolu. Navázáním uPA na uPAR dochází k aktivaci proteintyrozinkináz [22], proteinkinázy C [23] a MAP kinázy [24]. Současně byla popsána i přímá signální cesta Jak/STAT kaskádou s využitím signální transdukce Scr-like proteintyrosinkinázy [25]. Exprese uPAR je regulována řadou růstových faktorů, např. EGF, bFGF a HGF. Extracelulární interakce mezi uPA, uPAR, α5β1 integrinem a fibronektinem iniciuje intracelulární signální kaskádu zprostředkovanou přes epidermální růstový faktor [26]. uPAR/uPA/PAI 1 systém se také podílí na angiogenezi indukované prostřednictvím VEGF [27].

Zajímavé je, že PAI 1 pozitivní buňky byly zachyceny spíše v centrálních částech tumorů, zatímco na periferii byla zjištěna vysoká exprese uPA společně se známkami tkáňové destrukce, což podporuje teorii, podle níž by inhibitor mohl chránit tkáň proti působení uPA [6]. Bylo zjištěno, že PAI 1 inhibuje uPA dependentní invazivitu buněčných linií karcinomu plic, ovariálního karcinomu, choriokarcinomu či fibrosarkomu [28–30]. Rostoucí exprese PAI 1 v nádorové tkáni je však u těchto pacientů spojena s horší prognózou. Tím je jeho role v celé šíři nádorového růstu zatím neobjasněná [31,32]. Proč je rostoucí hladina proteolytického inhibitoru spojena s horší prognózou, je tedy nejasné. Avšak užitím PAI 1 deficientních transgenních myší bylo zjištěno, že lokální invaze a s tumorem asociovaná angiogeneze jsou závislé na přítomnosti PAI 1 [33–35]. Jak se tedy PAI 1 podílí na tumorózní progresi? Vysvětlení může být následující: indukce uPAR vede k modifikaci integriny zprostředkované buněčné adheze prostřednictvím interakce s vitronectinem. Vazba uPA navázáním na uPAR vede k vzrůstu afinity k vitronectinu, je tedy pravděpodobné, že zvýšení PAI 1 sníží buněčnou adhezi k extracelulární matrix interferencí s uPAR navázaným na vitronectin, tímto pak zjednoduší buněčnou invazi a migraci [11,36–39].

PAI 1 se váže nejen na volný uPA, ale i na uPA vázaný k uPAR. Nemáme zatím vysvětlení například pro skutečnost, že u kolorektálních karcinomů je uPA exprimován hlavně na nádorových buňkách a PAI 1 nalézán převážně na endoteliích, na rozdíl třeba od karcinomu prsu, kde je uPA, uPAR a PAI 1 exprimován jak na nádorových, tak i na okolních buňkách stromatu [40]. Role PAS v metastatickém procesu není tedy závislá pouze na proliferačním a invazivním potenciálu vlastních nádorových buněk, ale vyžaduje existenci podpůrného vaskularizovaného nádorového stromatu, což představuje vzájemnou komunikaci mezi nádorovou linií a hostitelským prostředím a vytvoření nových cév v procesu angiogeneze. Angiogenezí je obecně označována novotvorba cév, proces podstatný pro růst tumoru. Jedná se o stav přísně regulovaný rovnováhou mezi aktivátory a inhibitory angiogeneze. Podkladem je rozpuštění bazální membrány, proliferace endotelií, jejich migrace a vytvoření nové cévy. Angiogeneze je stimulována hypoxií a právě hypoxie vede k zvýšení exprese uPAR a PAI 1 na endoteliálních buňkách [41]. Řada angiogenních faktorů jako např. VEGF, bFGF  indukuje expresi uPA, tPA, uPAR a PAI 1, zatímco TGF β snižuje expresi uPA a posiluje PAI 1 produkci [42,43]. Důležitou roli v destrukci extracelulární matrix hrají kromě serinových proteináz (uPA, PAI 1) i katepsin B (CATB) a katepsin L (CATL), které jsou cysteinovými proteinázami [44,45]. Přesný mechanizmus, jakým se PAI 1 podílí na angiogenezi, však zatím nebyl objasněn. Zásadní je ale jeho význam při ochraně extracelulární matrix proti degradaci a vytvoření sítě pro migrující endoteliální buňky. PAI 1 prokázal u různých buněčných linií schopnost ochrany proti apoptóze, ať už spontánní, či léky indukované. Mechanizmus, kterým toho dosáhne, však zatím není znám [46].

Někteří autoři se domnívají, že PAI 1 nebo jeho nedostatek alteruje se signálními cestami jako např. PI3K/Akt a Jak/STAT a je zahrnut do procesů udržení integrity endoteliálních buněk, a tím i regulace buněčné smrti. PAI 1 ovlivňuje apoptózu snížením buněčné adheze a působením na intracelulární signální dráhy. Umožní to jeho schopnost inhibice generace plazminu, inhibice kaspázy 3 a schopnost inhibice buněčné adheze zprostředkované vitronectinem. Právě inhibice kaspázy 3 prostřednictvím PAI 1 může směrovat intracelulární buněčnou signalizaci od indukce apoptózy k indukci proliferace [47,48].

Plazminogen aktivátor systém jako cíl antitumorózní léčby

Jako první podali důkaz o antitumorózním efektu plazminu Cliffton a Grossi v roce 1956, kdy využili podání plazminu u pokusných králíků v návaznosti na intravenózní aplikaci nádorových buněk [49]. V současnosti se výzkum zaměřuje na několik cest, kterými by bylo možné ovlivnit PAS, a tím i procesy, kterých se v rámci nádorového růstu účastní:

  • a)  vytvoření nízkomolekulárních inhibitorů zaměřených přímo proti enzymaticky aktivnímu místu uPA,
  • b) proteolyticky inaktivní uPA nebo jí podobné peptidy,
  • c)  monoklonální nebo polyklonální protilátky proti uPA či uPAR blokující uPA/uPAR interakci,
  • d) rekombinantní, solubilní formy uPAR interferující s navázáním uPA na povrch nádorové buňky,
  • e)  inhibice syntézy PAS – využitím antisens oligodeoxynukleotidů nebo RNA zaměřená proti uPA nebo uPAR expresi,
  • f)  toxiny napojené na uPA,
  • g) virové vektory přenášející jednotlivé genové komponenty pro PAS [16].

Zatím jsou však zkoušeny preparáty zaměřující se na PAS spíše u jiných onemocnění, jako např. Tiplaxtinin – inhibitor PAI 1(PAI-039), malá molekula, která oslabuje remodelaci cév, ke které dochází např. při aktivaci systému renin-angiotenzin u arteriální hypertenze. První výsledky jsou však publikovány s pozitivním efektem i na tumorózní angiogenezi u zvířecích modelů [50].

Závěr

Jak již bylo uvedeno, jednotlivé faktory PAS se jistě podílí na procesu malignizace nádorových onemocnění. Na otázky, do jaké míry je jejich vliv zásadní u konkrétních malignit a jak by mohl být terapeuticky nasměrován ve prospěch nemocného, by měl odpovědět další výzkum. V článku je souhrnně předložen přehled teoretických i klinických poznatků, které na své rutinní zavedení do praxe zatím čekají. Autoři článku však chtějí na podkladě publikovaných informací upozornit na vzájemnou provázanost koagulace, fibrinolýzy a procesu invaze a metastazování maligního onemocnění. Do budoucna by totiž jednotlivé faktory PAS mohly hrát významnou úlohu při plánování strategie léčby a zároveň by se mohly stát i terčem cílené terapie. 

Tato práce byla podpořena výzkumným záměrem Ministerstva zdravotnictví ČR: FUNDIN MZ0MOU2005.

MUDr. Jana Halámková, Ph.D.

www.mou.cz

e-mail: jana.halamkova@mou.cz 

Doručeno do redakce: 21. 6. 2011

Přijato po recenzi: 4. 8. 2011


Sources

1. Brummel-Ziedins K, Orfeo T, Swords JN et al. Blood coagulation and fibrinolysis. In: Greer JP, Foerster J, Rodgers JM et al (eds). Wintrobe’s Clinical Hematology. Baltimore: Lippincott Wiliams & Wilkins 2009: 528–619.

2. Schmitt M, Harbeck M, Thomssen C et al. Clinical impact of the plasminogen activation system in tumor invasion and metastasis: Prognostic relevance and target therapy. Thromb Haemost 1997; 78: 285–296.

3. Silverman GA, Bird PI, Carrell RW et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins: evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001; 276: 33293–33296.

4. De Bruin PA, Griffioen G, Verspaget HW et al. Plasminogen activators and tumor development in the human colon: activity levels in normal mucosa, adenomatous polyps, and adenocarcinomas. Cancer Res 1987; 47: 4654–4657.

5. Duffy MJ. The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 2004; 10: 39–49.

6. Pyke C, Kristensen P, Ralfkiaer E et al. The plasminogen activation system in human colon cancer: Messenger RNA for the inhibitor PAI-1 is located in endothelial cells in tumor stroma. Cancer Res 1991; 51: 4067–4071.

7. Fya WP, Shapiro AD, Shih JL et al. Brief report: Complete deficiency of plasminogen-activator inhibitor type 1 due to a frame-shift mutation. N Engl J Med 1992; 327: 1729–1733.

8. Carmeliet P, Stassen JM, Schoonjans L et al. Plasminogen activator inhibitor-1 gene-deficient mice. II. Effect on haemostasis, thrombosis and thrombolysis. J Clin Invest 1993; 92: 2756–2760.

9. Hill SA, Shaughnessy SG, Joshua P et al. Dif­ferential mechanisms targeting type 1 plasminogen activator inhibitor and vitronectin into the storage granules of a human megakaryocytic cell line. Blood 1996; 87: 5061–5073.

10. Stefansson S, Peticlerc E, Wong MK et al. Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J Biol Chem 2001; 276: 8135–8141.

11. Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 1996; 383: 441–443.

12. Sugiura Y, Ma L, Sun B et al. The plasminogen-plasminogen activator (PA) system in neuroblastoma: role of PA inhibitor-1 in metastasis. Cancer Res 1999; 59: 1327–1336.

13. Nykjaer A, Conese M, Christensen EI et al. Recycling of the urokinase receptor upon internalization of the uPA: serpin complexes. EMBO J 1997; 16: 2610–2620.

14. Chazaud B, Ricoux R, Christov C et al. Promigratory effect of plasminogen activator inhibitor-1 on invasive breast cancer cell populations. Am J Pathol 2002; 160: 237–246.

15. Baker EA, Bergin FG, Leaper DJ et al. Plasminogen activator system, vascular endothelial growth factor and colorectal cancer progression. Mol Pathol 2000; 53: 307–312.

16. Schmitt M, Wilhelm O, Reuning U et al. The urokinase plasminogen activator system as a novel target for tumour therapy. Fibrinolysis Proteol 2000; 14: 114–132.

17. Meijers JC, Marquart JA, Bertina MR et al. Protein C inhibitor (plasminogen activator inhibitor-3) and the risk of venous thrombosis. Br J Haematol 2002; 118: 604–609.

18. Mignatti P, Rifkin DB. Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Prot 1996; 49: 117–137.

19. Pepper MS, Sappino AP, Stöcklin R et al. Up-regulation of urokinase receptor expression on migrating endotelial cells. J Cell Biol 1993; 122: 673–684.

20. Ploug M, Ronne E, Behrendt N et al. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosylphosphatidylinositol. J Biol Chem 1991; 266: 1926–1933.

21. Waltz DA, Natkin LR, Fujita RM et al. Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Invest 1997; 100: 58–67.

22. Resnati M, Guttinger M, Valcamonica S et al. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J 1996; 15: 1572–1582.

23. Busso N, Masur SK, Lazega D et al. Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epitelial cells. J Cell Biol 1994; 126: 259–270.

24. Nguyen DH, Hussaini IM, Gonias SL. Binding of urokinase-type plasminogen activator to its receptor in MCF-7 cells activates extracellular signal regulated kinase 1 and 2 which is required for increased cellular motility. J Biol Chem 1998; 273: 8502–8507.

25. Dumler I, Weis A, Mayboroda OA et al. The Jak/Stat pathway and urokinase receptor signaling in human aortic vascular smooth muscle cells. J Biol Chem 1998; 273: 315–321.

26. Durand MK, Bødker JS, Christensen A et al. Plasminogen activator inhibitor 1 and tumour growth, invasion and metastasis. Tromb Haemost 2004; 91: 439–449.

27. Prager GW, Breuss JM, Steurer S et al. Vascular endothelial growth factor receptor-2-induced initial endothelial cell migration depends on the presence of the urokinase receptor. Circ Res 2004; 94: 1562–1570.

28. Brückner A, Filderman AE, Kirchheimer JC et al. Endogenous receptor-bound urokinase mediates tissue invasion of the human lung carcinoma cell lines A549 and Calu-1. Cancer Res 1992; 52: 3043–3047.

29. Kobayashi H, Moniwan N, Gotoh J et al. Role of activated protein C in faciliting basement membrane invasion by tumor cells. Cancer Res 1994; 54: 261–267.

30. Praus M, Collen D, Gerard RD. Both u-PA inhibition and vitronectin binding by plasminogen activator inhibitor 1 regulate HT1080 fibrosarcoma cell metastasis. Int J Cancer 2002; 102: 584–591.

31. Harbeck N, Schmitt M, Kates RE et al. Clinical utility of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 determination in primary breast cancer tissue for individualized therapy concepts. Clin Breast Cancer 2002; 3: 196–200.

32. Taponeco F, Curcio C, Giuntini A et al. Expression and prognostic significance of urokinase and plasminogen activator inhibitor type-1 in endometrial hyperplazia and cancer. J Exp Clin Canc Res 2001; 20: 239–246.

33. Bajou K, Noël A, Gerard RD et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 1998; 4: 923–928.

34. Rak J, Klement P, Yu J. Genetic determinats of cancer coagulopathy, angiogenesis an disease progression. Vnitř Lék 2006; 52 (Suppl 1): 135–138.

35. Penka M. Activation of blood coagulation in oncology patient. Vnitř Lék 1997; 43: 337–339.

36. Deng C, Cirriden SA, Wang S et al. Is plasminogen activator inhibitor 1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release? J Cell Biol 1996; 134: 1563–1571.

37. Kanse SM, Kost C, Wilhelm OG et al. The urokinase receptor is a major vitronectin-binding protein on endothelial cells. Exp Cell Res 1996; 224: 344–353.

38. Abe J, Urano T, Konno H et al. Larger and more invasive colorectal carcinoma contains larger amounts of plasminogen activator inhibitor type 1 and its relative ratio over urokinase receptor correlates well with tumor size. Cancer 1999; 86: 2602–2611.

39. Malý J, Blažek M, Bláha M et al. Changes in hemostasis in malignant diseases. Vnitř Lék 2002; 48: 614–618.

40. Rakic JM, Maillard C, Jost M et al. Role of plasminogen activator-plasmin system in tumor angio­genesis. Cell Mol Life Sci 2003; 60: 463–473.

41. Uchiyama T, Kurabayashi M, Ohyama Y et al. Hypoxia induced transcription of the plasminogen activator inhibitor 1 gene through genistein-sensitive tyrosine kinase pathways in vascular endothelial cells. Arterioscl Throm Vas 2000; 20: 1155–1161.

42. Premzl A, Turk V, Kos J. Intracellular proteolytic activity of cathepsin B is associated with capillary-like tube formation by endothelial cells in vitro. J Cell Biochem 2006; 97: 1230–1240.

43. Smith OP. Thrombotic complications in children with cancer. Vnitř Lék 2009; 55: 223–226.

44. Danø K, Behrendt N, Høyer-Hansen G et al. Plasminogen activations and cancer. Thromb Haemost 2005; 93: 676–681.

45. Krueger S, Kalinski T, Wolf H et al. Interactions between human colon carcinoma cells, fibroblasts and monocytic cells in coculture-regulation of cathepsin B expression and invasiveness. Cancer Lett 2005; 223: 313–322.

46. Kwaan HC, Wang J, Svoboda K et al. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer 2000; 82: 1702–1708.

47. Balsara RD, Ploplis VA. Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost 2008; 100: 1029–1036.

48. Schneider DJ, Chen Y, Sobel BE. The effect of plasminogen activator inhibitor type 1 on apoptosis. Thromb Haemost 2008; 100: 1037–1040.

49. Clifton EE, Grossi CE. Effect of human plasmin on the toxic effects and growth of blood borne metastasis of the Brown-Pearce carcinoma and the V2 carcinoma of rabbit. Cancer 1956; 9: 1147–1152.

50. Leik CE, Su EJ, Nambi P et al. Effect of pharmacologic plasminogen activator inhibitor-1 inhibition on cell motility and tumor angiogenesis. J Thromb Haemost 2006; 4: 2710–2715.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 2

2012 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#