Current view on the risks of artificial pulmonary ventilation


Authors: R. Kula 1;  P. Sklienka 1;  V. Chýlek 1;  P. Szturz 1;  J. Neiser 2
Authors‘ workplace: Anesteziologicko-resuscitační klinika FN Ostrava, přednosta prim. MUDr. Jan Jahoda 1;  Oddělení pediatrické intenzívní a resuscitační péče FN Ostrava, přednosta doc. MUDr. Michal Hladík, Ph. D. 2
Published in: Vnitř Lék 2007; 53(12): 1319-1324
Category: Review

Overview

There is no doubt that artificial ventilation of lungs seems to be proven as life-saving manoeuvre, whereas a growing amount of evidence is presented and published recently that artificial ventilation cause damage to patient by so far unexplained mechanism – by conversion of mechanical stress to biochemical signals inducing local and systemic inflammatory response, which is wide spreading and causing multiple organ dysfunction syndrome (MODS). Higher mortality of patients with acute lung injury on MODS rather than acute respiratory failure itself can be explained just by these findings. The article is brief summary of recent opinions of mechanism of ventilator induced lung and systemic injury. There is also evidence that the process of implementation of these finding into clinical practice is exceedingly slow.

Keywords:
artificial lung ventilation – ventilator induced lung injury – multiorgan dysfunction syndrome (MODS)


Sources

1. Albertine KH, Soulier MF, Wang Z et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol 2002; 16: 1783-1796.

2. Amato MB, Barbas CS, Medeiros DM et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 347-354.

3. Carlon GC, Combs AH. Mechanical ventilation and the diseased lung. Crit Care Med 2000; 28: 2662-2664.

4. Cohen J. The immunopathogenesis of sepsis. Nature 2002; 420: 885-891.

5. Dos Santos CC, Slutsky AS. Mechanisms of ventilator-associated lung injury. J Appl Physiol 2000; 89: 1645-1655.

6. Esteban A, Anzueto A, Alia A et al. How is mechanical ventilation employed in the intensive care unit? Am J Respir Crit Care Med 2000; 161: 1450-1458.

7. Ferring M, Vincent JL. Is outcome from ARDS related to the severity of respiratory failure? Eur Respir J 1997; 10: 1297-1300.

8. Frank JA, Matthay MA. Science review: mechanism of ventilator-induced lung injury. Critical Care 2003; 7: 233-241.

9. Gajic O, Frutos-Vivar F, Esteban A et al. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med 2005; 31: 893-895.

10. Gattinoni L, Chiumello D, Cressoni M et al. Pulmonary computed tomography and adult respiratory distress syndrome. Swiss Med Wkly 2005; 135: 169-174.

11. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005; 31: 776-784.

12. Guery BPH, Welsh DA, Viget N et al. Ventilation-induced lung injury is associated with an increase in gut permeability. Shock 2003; 19: 559-563.

13. Haitsma JJ, Uhlig S, Göggel R et al. Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med 2000; 26: 1515-1522.

14. Henzler D, Pelosi P, Dembinski R et al. Respiratory compliance but not gas exchange corelates with changes in lung aeration after a recruitment maneuver: an experimental study in pigs with saline lavage lung injury. Crit Care 2005; 9: R471-R482.

15. Chastre J, Trouillet JL, Vuagnat A et al. Nosocomial pneumonia in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1998; 157: 1165-1172.

16. Imai Y, Parodo J, Kajikawa O et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 2003; 289: 2104-2112.

17. Lassen HC. A preliminary report on the 1952 epidemic of poliomyelitis in Copenhagen with special reference to the treatment of acute respiratory insufficiency. Lancet 1953; 1: 37-41.

18. Lichtwarck-Aschoff M, Mols G, Hedlund AJ et al. Compliance is nonlinear over tidal volume irrespective of positive end-expiratory pressure level in surfactant-depleted piglets. Am J Respir Crit Care Med 2000; 162: 2125-2133.

19. Matute-Bello G, Liles WC, Steinberg KP et al. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J Immunol 1999; 163: 2217-2225.

20. Mead J, Takishima T, Leith D et al. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28: 596-608.

21. Meduri GU. Clinical review: A paradigm shift: the bidirectional effect of inflammation on bacterial growth. Clinical implications for patients with acute respiratory distress syndrome. Crit Care 2002; 6: 24-29.

22. Munford RS, Pugin J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med 2001; 163: 316-321.

23. Murphy DB, Cregg N, Tremblay LN et al. Adverse ventilatory strategy causes pulmonary-to-system translocation of endotoxin. Am J Respir Crit Care Med 2000; 162: 27-33.

24. Nagel T, Resnick N, Dewey CF et al. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vasc Biol 1999; 19: 1825-1834.

25. Parker JC, Hernandez LA, Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med 1993; 21: 131-143.

26. Pinski MR. Sepsis and Inflammation: The process of dying from critical care. In: Vincent JL (eds). Yearbook of Intensive care Medicine 1996; München: Springer-Verlag 1996, 3-10.

27. Plötz FB, Vreugdenhil HA, Slutsky AS et al. Mechanical ventilation alters the immune response in ventilated children without lung pathology. Int Care Med 2002; 28: 486-492.

28. Plötz FB, Slutsky AS, van Vught AJ et al. Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Int Care Med 2004; 30: 1865-1872.

29. Pugin J, Dunn I, Jolliet P et al. Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 1998; 275: L1040-L1050.

30. Radford EP. Static mechanical properties of mammalian lungs. In: Fenn WO, Rahn H (eds). Handbook of Physiology. Section 3: Respiration, Vol. I. Washington (DC): American Physiological Society; 1964, Vol. 1/3: 429-449.

31. Ranieri VM, Suter PM, Tortorella C et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282: 54-61.

32. Ranieri VM, Giunta F, Suter PM et al. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome JAMA 2000; 284: 43-44.

33. Rubenfeld GD, Caldwell E, Hudson L. Publication of study results does not increase use of lung protective ventilation in patients with acute lung injury. Am J Respir Crit Care Med 2001; 163: A295

34. Schultz MJ, Haitsma JJ, Slutsky AS et al. What tidal volumes should be used in patients without acute lung injury? Anesthesiology 2007; 106: 1226-1231.

35. Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975; 292: 284-289.

36. Tremblay LN, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 1998; 110: 482-488.

37. Tremblay LN, Miatto D, Hamid Q et al. Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med 2002; 30: 1693-1700.

38. Tremblay LN, Valenza F, Ribeiro SP et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99: 944-952.

39. Vincent JL, Bihari D, Suter PM et al. The prevalence of nosocomial infection in intensive care units in Europe: result of the European Prevalence of Infection in Intensive Care (EPIC) Study. JAMA 1995; 274: 639-644.

40. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342: 1301-1308.

41. Verbrugge SJ, Sorm V, van’t Veen A et al. Lung overinflation without positive end-expiratory preassure promotes bacteriemia after experimental Klebsiella pneumoniae inoculation. Int Care Med 1998; 24: 172-177.

42. Villar J. Ventilator or physician-induced lung injury? Minerva Anestesiol 2005; 71: 255-258.

43. Weinert CR, Gross CR, Marinelli WA Impact of randomized trial results on acute lung injury ventilator therapy in teaching hospitals. Am J Respir Crit Care Med 2003; 167: 1304-1309.

44. Wolthuis E, Spronk P, Kuiper M et al. Dutch intensivists do not use small tidal volume in mechanical ventilation. Critical Care 2004; 8(Suppl 1): P26.

45. Young MP, Manning HL, Wilson DL et al. Ventilation of patients with acute lung injury and acute respiratory distress syndrome: has new evidence changed clinical practice? Crit Care Med 2004; 32: 1260-1265.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 12

2007 Issue 12

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account