#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Inflammatory bowel disease in patients with primary sclerosing cholangitis – a unique phenotype of IBD


Authors: L. Bajer 1;  D. Kamenář 1;  E. Sticová 2;  P. Wohl 1;  J. Špičák 1;  P. Drastich 1
Authors‘ workplace: Klinika hepatogastroenterologie, IKEM, Praha 1;  Pracoviště klinické a transplantační patologie, IKEM, Praha 2
Published in: Gastroent Hepatol 2014; 68(1): 24-35
Category: IBD: Review Article

Overview

Inflammatory bowel disease associated with primary sclerosing cholangitis (PSC-IBD) can be understood as a unique phenotype of IBD due to its specific characteristics. The highest prevalence can be found in north European and American countries which also have the highest prevalence of PSC. Both IBD and PSC are multifactorial diseases, in the development of which genetic predispositions play a decisive role. A pathogenetic association between these two diseases is almost undeniable but their precise causal relationship remains unclear. An important role is probably played by secondary bile acids, intestinal microflora, intestinal barrier malfunction, and regulatory T-lymphocytes. In spite of all the relations mentioned, the origin of these two diseases is usually metachronous – PSC can manifest many years after a total proctocolectomy and, on the contrary, colitis appears de novo in liver transplant patients in as many as 30% of cases. In most patients, however, the onset of IBD precedes the development of PSC. PSC-IBD typically manifest as a relatively mild pancolitis with the predominant involvement of the right-side colon. Typical manifestations include simultaneous affection of the terminal ileum (“backwash” ileitis) and “rectal sparing”. From the histological point of view, in the vast majority of cases it is referred to as ulcerative colitis (79–91.2%), and only rarely as Crohn's disease (6.3–7 %). Due to its mild progression, colitis is most often treated with aminosalicylate monotherapy. As regards thiopurines, it is necessary to consider the increased occurrence of adverse effects, especially hepatotoxic ones. There are no sufficient data on the use of biological treatment in this group of patients. The first-choice method in surgical treatment is proctocolectomy with ileal pouch-anal anastomosis (IPAA). PSC patients displayed a higher rate of pouchitis (63–75%), both acute and chronic. Considering the increased risk of colorectal carcinoma in this group of patients, it is recommended to perform a total colonoscopy once a year. A single focus of non-lipoid lesions with low-grade dysplasia verified by two pathologists should lead to considering prophylactic colectomy, with a view to a high risk of progression to colorectal carcinoma (up to 50% within five years). As regards chemoprevention of colorectal carcinoma in PSC-IBD patients, good results are achieved by administering ursodeoxycholic acid in low doses (8–15 mg/kg/day).

Key words:
primary sclerosing cholangitis – inflammatory bowel disease – ulcerative colitis – colorectal carcinoma

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE „uniform requirements“ for biomedical papers.

Submitted:
16. 12. 2013

Accepted:
17. 1. 2014


Sources

1. Boonstra K, van Erpecum KJ, van Nieuwkerk KM et al. Primary sclerosing cholangitis is associated with a distinct phenotype of inflammatory bowel disease. Inflamm Bowel Dis 2012; 18(12): 2270–2276. doi: 10.1002/ibd.22938.

2. Lamberts LE, Janse M, Haagsma EB et al. Immune-mediated diseases in primary sclerosing cholangitis. Dig Liver Dis 2011; 43(10): 802–806. doi: 10.1016/j.dld.2011.05.009.

3. Drastich P, Bajer L, Wohl P et al. Transplantace jater pro primární sklerozující cholangitidu. Gastroent Hepatol 2013; 67(5): 413–420.

4. Boonstra K, Weersma RK, van Erpecum KJ et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology 2013; 58(6): 2045–2055. doi: 10.1002/hep.26565.

5. Krones E, Graziadei I, Trauner M et al. Evolving concepts in primary sclerosing cholangitis. Liver Int 2012; 32(3): 352–369. doi: 10.1111/j.1478-3231.2011.02607.x.

6. Broomé U, Olsson R, Loof L et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 1996; 38(4): 610–615.

7. Escorsell A, Parés A, Rodés J et al. Epidemiology of primary sclerosing cholangitis in Spain. Spanish association for the study of the liver. J Hepatol 1994; 21(5): 787–791.

8. Takikawa H, Takamori Y, Tanaka A et al. Analysis of 388 cases of primary sclerosing cholangitis in Japan; presence of subgroup without pancreatic involvement in older patients. Hepatol Res 2004; 29(3): 153–159.

9. Loftus EV Jr, Sandborn WJ, Lindor KD et al. Interactions between chronic liver disease and inflammatory bowel disease. Inflamm Bowel Dis 1997; 3(4): 288–302.

10. Jorgensen KK, Grzyb K, Lundin KE et al. Inflammatory bowel disease in patients with primary sclerosing cholangitis: clinical characterization in liver transplanted and nontransplanted patients. Inflamm Bowel Dis 2012; 18(3): 536–545. doi: 10.1002/ibd.21699.

11. Halliday JS, Djordjevic J, Lust M et al. A unique clinical phenotype of primary sclerosing cholangitis associated with Crohn’s disease. J Crohns Colitis 2012; 6(2): 174–181. doi: 10.1016/j.crohns.2011.07.015.

12. Lee YM, Kaplan MM. Primary sclerosing cholangitis. N Engl J Med 1995; 332(14):  924–933.

13. Loftus EV Jr, Harewood GC, Loftus CG et al. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 2005; 54(1): 91–96.

14. Sinakos E, Samuel S, Enders F et al. Inflammatory bowel disease in primary sclerosing cholangitis: a robust yet changing relationship. Inflamm Bowel Dis 2013; 19(5): 1004–1009. doi: 10.1097/MIB.0b013e3182802893.

15. Ponsioen CY, Vrouenraets SM, Prawirodirdjo W et al. Natural history of primary sclerosing cholangitis and prognostic value of cholangiography in a Dutch population. Gut 2002; 51(4): 562–566.

16. Bergquist A, Montgomery SM, Bahmanyar S et al. Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2008; 6(8): 939–943. doi: 10.1016/j.cgh.2008.03.016.

17. Bergquist A, Lindberg G, Saarinen S et al. Increased prevalence of primary sclerosing cholangitis in patients with ulcerative colitis. Gastroenterology 1991; 100: 1319–1323.

18. Saarinen S, Olerup O, Broomé U. Increased frequency of autoimmune diseases in patients with primary sclerosing cholangitis. Am J Gastroenterol 2000; 95(11): 3195–3199.

19. Yap LM, Ahmad T, Jewell DP. The contribution of HLA genes to IBD susceptibility and phenotype. Best Pract Res Clin Gastroenterol 2004; 18(3): 577–596.

20. Ahmad T, Marshall SE, Jewell D. Genetics of inflammatory bowel disease: the role of the HLA complex. World J Gastroenterol 2006; 12(23): 3628–3635.

21. Donaldson PT, Norris S. Evaluation of the role of MHC class II alleles, haplotypes and selected amino acid sequences in primary sclerosing cholangitis. Autoimmunity 2002; 35(8): 555–564.

22. Satsangi J, Welsh KI, Bunce M et al. Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflam­matory bowel disease. Lancet 1996; 347(9010): 1212–1217.

23. Karlsen TH, Boberg KM, Vatn M et al. Different HLA class II associations in ulcerative colitis patients with and without primary sclerosing cholangitis. Genes Immun 2007; 8(3): 275–278.

24. Kane S, Kisiel J, Shih L et al. HLA disparity determines disease activity through pregnancy in women with inflammatory bowel disease. Am J Gastroenterol 2004; 99(8): 1523–1526.

25. Cholongitas E, Papatheodoridis G, Zap­poli P et al. Combined HLA-DR and -DQ disparity is associated with a stable course of ulcerative colitis after liver transplantation for primary sclerosing cholangitis. Liver Transpl 2007; 13(4): 552–557.

26. Karlsen TH, Franke A, Melum E et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 2010; 138(3): 1102–1111. doi: 10.1053/j.gastro.2009.11.046.

27. Melum E, Franke A, Schramm C et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet 2011; 43(1): 17–19. doi: 10.1038/ng.728.

28. Janse M, Lamberts LE, Franke L et al. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology 2011; 53(6): ­1977–1985. doi: 10.1002/hep.24307.

29. Miao XP, Sun XN, Wei H et al. Crohn’s disease and primary sclerosing cholangitis: a case report and review of the literature. Intern Med 2012; 51(16): 2077–2081.

30. Kekilli M, Tunc B, Beyazit Y et al. Circulating CD4+CD25+ regulatory T cells in the pathobiology of ulcerative colitis and concurrent primary sclerosing cholangitis. Dig Dis Sci 2013; 58(5): 1250–1255. doi: 10.1007/s10620-012-2511-y.

31. Harada K, Ohira S, Isse K et al. Lipopolysaccharide activates nuclear factor-kap­paB through toll-like receptors and related molecules in cultured biliary epithelial cells. Lab Invest 2003; 83(11): 1657–1667.

32. Terjung B, Söhne J, Lechtenberg B et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut 2010; 59(6): 808–816. doi: 10.1136/gut.2008.157818.

33. Roozendaal C, Pogány K, Horst G et al. Does analysis of the antigenic specificities of anti-neutrophil cytoplasmic antibodies contribute to their clinical signifikance in the inflammatory bowel diseases? Scand J Gastroenterol 1999; 34(11): 1123–1131.

34. Hurtado PR, Jeffs L, Nitschke J et al. CpG oligodeoxynucleotide stimulates production of anti-neutrophil cytoplasmic antibodies in ANCA associated vasculitis. BMC Immunol 2008; 9: 34. doi: 10.1186/1471-2172-9-34.

35. Dobric S, Popovic D, Nikolic M et al. Anti-neutrophil cytoplasmic antibodies (ANCA) specific for one or several antigens: useful markers for subtypes of ulcerative colitis and associated primary sclerosing cholangitis. Clin Chem Lab Med 2011; 50(3): ­503–509. doi: 10.1515/CCLM.2011.797.

36. Hov JR, Boberg KM, Karlsen TH. Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol 2008; 14(24): 3781–3791.

37. Lombardi G, Annese V, Piepoli A et al. Antineutrophil cytoplasmic antibodies in inflammatory bowel disease: clinical role and review of the literature. Dis Colon Rec­tum 2000; 43(7): 999–1007.

38. Mendes FD, Jorgensen R, Keach J et al. Elevated serum IgG4 concentration in patients with primary sclerosing cholangitis. Am J Gastroenterol 2006; 101(9): 2070–2075.

39. Navaneethan U, Venkatesh PG, Choudhary M et al. Elevated immunoglobulin G4 level is associated with reduced colectomy-free survival in patients with primary sclerosing cholangitis and ulcerative colitis. J Crohns Colitis 2013; 7(2): e35–e41. doi: 10.1016/j.crohns.2012.04.006.

40. Virk RK, Lauwers GY, Deshpande V. The significance of IgG4 in inflammatory bowel disease. United States and Canadian Academy of Pathology 2011; [Abstract].

41. Navaneethan U, Venkatesh PG, Kapoor S et al. Elevated serum IgG4 is associated with chronic antibiotic-refractory pouchitis. J Gastrointest Surg 2011; 15(9): ­1556–1561. doi: 10.1007/s11605-011-1587-6.

42. Nakazawa T, Naitoh I, Hayashi K et al. Diagnosis of IgG4-related sclerosing cholangitis. World J Gastroenterol 2013; 19(43): 7661–7670. doi: 10.3748/wjg.v19.i43.7661.

43. Eaton JE, Silveira MG, Pardi DS et al. High-dose ursodeoxycholic acid is asso­ciated with the development of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Am J Gastroenterol 2011; 106(9): 1638–1645. doi: 10.1038/ajg.2011.156.

44. Lindström L, Lapidus A, Ost A et al. Increased risk of colorectal cancer and dysplasia in patients with Crohn´s colitis and primary sclerosing cholangitis. Dis Colon Rectum 2011; 54(11): 1392–1397. doi: 10.1097/DCR.0b013e31822bbcc1.

45. Wolf JM, Rybicki LA, Lashner BA. The impact of ursodeoxycholic acid on cancer, dysplasia and mortality in ulcerative colitis patients with primary sclerosing cholangitis. Aliment Pharmacol Ther 2005; 22(9): 783–788.

46. Ikegami T, Matsuzaki Y, Shoda J et al. The chemopreventive role of ursodeoxycholic acid in azoxymethane-treated rats: suppressive effects on enhanced group II phospholipase A2 expression in colonic ­tissue. Cancer Lett 1998; 134(2): 129–139.

47. Tung BY, Emond MJ, Haggitt RC et al. Ursodiol use is associated with lower prevalence of colonic neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Ann Intern Med 2001; 134(2): 89–95.

48. Wali RK, Frawley BP Jr, Hartmann S et al. Mechanism of action of chemoprotective ursodeoxycholate in the azoxymethane model of rat colonic carcinogenesis: potential roles of protein kinase C-alpha, -beta II, and -zeta. Cancer Res 1995; 55(22): 5257–5264.

49. Wohl P, Hucl T, Drastich P et al. Epithelial markers of colorectal carcinogenesis in ulcerative colitis and primary sclerosing cholangitis. World J Gastroenterol 2013; 19(14): 2234–2241. doi: 10.3748/wjg.v19.i14.2234.

50. Singh S, Khanna S, Pardi DS et al. Effect of ursodeoxycholic acid use on the risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis 2013; 19(8): 1631–1638. doi: 10.1097/MIB.0b013e318286fa61.

51. Schaeffer DF, Win LL, Hafezi-Bakh­tiari S et al. The phenotypic expression of inflammatory bowel disease in patients with primary sclerosing cholangitis differs in the distribution of colitis. Dig Dis Sci 2013; 58(9): 2608–2614. doi: 10.1007/s10620-013-2697-7.

52. Sokol H, Cosnes J, Chazouilleres O et al. Disease activity and cancer risk in inflammatory bowel disease associated with primary sclerosing cholangitis. World J Gastroenterol 2008; 14(22): 3497–3503.

53. Silverberg MS, Satsangi J, Ahmad T et al. Toward an integrated clinical, molecular and serological classification of inflam­matory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 2005; 19 (Suppl A): 5–36.

54. Broomé U, Löfberg R, Lundqvist K et al. Subclinical time span of inflammatory bowel disease in patients with primary sclerosing cholangitis. Dis Colon Rectum 1995; 38(12): 1301–1305.

55. Annese V, Daperno M, Rutter MD et al. European evidence based consensus for endoscopy in inflammatory bowel disease. J Crohns Colitis 2013; 7(12): 982–1018. doi: 10.1016/j.crohns.2013.09.016.

56. Van Assche G, Dignass A, Bokemeyer B et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 3: special situations. J Crohns Colitis 2013; 7(1): 1–33. doi: 10.1016/j.crohns.2012.09.005.

57. O´Toole A, Alakkari A, Keegan D et al. Primary sclerosing cholangitis and disease distribution in inflammatory bowel disease. Clin Gastroenterol Hepatol 2012; 10(4): ­439–441. doi: 10.1016/j.cgh.2011.11.010.

58. Rojas-Feria M, Castro M, Suárez E et al. Hepatobiliary manifestations in inflammatory bowel disease: the gut, the drugs and the liver. World J Gastroenterol 2013; 19(42): 7327–7340. doi: 10.3748/wjg.v19.i42.7327.

59. Stolfi C, Pallone F, Monteleone G. Colorectal cancer chemoprevention by mesalazine and its derivatives. J Biomed Biotechnol 2012; 980458. doi: 10.1155/2012/980458.

60. Angulo P, Batts KP, Jorgensen RA et al. Oral budesonide in the treatment of primary sclerosing cholangitis. Am J Gastroenterol 2000; 95(9): 2333–23337.

61. Pallavicino F, Pellicano R, Reggiani S et al. Inflammatory bowel diseases and primary sclerosing cholangitis: hepatic and pancreatic side effects due to azathioprine. Eur Rev Med Pharmacol Sci 2013; 17(1): 84–87.

62. Barbero-Villares A, Mendoza J, Trapero-Marugan M et al. Evaluation of liver fibrosis by transient elastography in methotrexate treated patients. Med Clin (Barc) 2011; 137(14): 637–639. doi: 10.1016/j.medcli.2010.12.024.

63. Ghabril M, Bonkovsky HL, Kum C et al. Liver injury from tumor necrosis factor-α antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol 2013; 11(5): ­558–564. doi: 10.1016/j.cgh.2012.12.025.

64. Hommes DW, Erkelens W, Ponsioen C et al. A double-blind, placebo-control­led, randomized study of infliximab in primary sclerosing cholangitis. J Clin Gastroenterol 2008; 42(5): 522–526. doi: 10.1097/MCG.0b013e3181662426.

65. Poritz LS, Koltun WA. Surgical management of ulcerative colitis in the presence of primary sclerosing cholangitis. Dis Colon Rectum 2003; 46(2): 173–178.

66. Pardi DS, D'Haens G, Shen B et al. Clinical guidelines for the management of pouchitis. Inflamm Bowel Dis 2009; 15(9): 1424–1431. doi: 10.1002/ibd.21039.

67. Gionchetti P, Rizzello F, Poggioli G et al. Oral budesonide in the treatment of chronic refractory pouchitis. Aliment Pharmacol Ther 2007; 25(10): 1231–1236.

68. Gionchetti P, Rizzello F, Venturi A et al. Oral bacteriotherapy as maintenance treat­ment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 2000; 119(2): 305–309.

69. Marelli L, Xirouchakis E, Kalambokis G et al. Does the severity of primary sclerosing cholangitis influence the clinical course of associated ulcerative colitis? Gut 2011; 60(9): 1224–1228. doi: 10.1136/gut.2010.235408.

70. Ho GT, Seddon AJ, Therapondos G et al. The clinical course of ulcerative colitis after orthotopic liver transplantation for primary sclerosing cholangitis: further appraisal of immunosuppression post transplantation. Eur J Gastroenterol Hepatol 2005; 17(12): 1379–1385.

71. Verdonk RC, Haagsma EB, Van Den Berg AP et al. Inflammatory bowel disease after liver transplantation: a role for cytomegalovirus infection. Scand J Gastroenterol 2006; 41(2): 205–211.

72. Rudolph G, Gotthardt D, Kloeters-Plachky P et al. In PSC with dominant bile duct stenosis, IBD is associated with an increase of carcinomas and reduced survival. J Hepatol 2010; 53(2): 313–317. doi: 10.1016/j.jhep.2010.02.030.

73. Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 2012; 10(6): 639–645. doi: 10.1016/j.cgh.2012.01.010.

74. Broomé U, Löfberg R, Veress B et al. Primary sclerosing cholangitis and ulcerative colitis: evidence for increased neo­plastic potential. Hepatology 1995; 22(5): 1404–1408.

75. Braden B, Halliday J, Aryasingha S et al. Risk for colorectal neoplasia in patients with colonic Crohn’s disease and concomitant primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2012; 10(3): ­303–308. doi: 10.1016/j.cgh.2011.10.020.

76. Jørgensen KK, Lindström L, Cvancarova M et al. Colorectal neoplasia in pa­tients with primary sclerosing cholangitis undergoing liver transplantation: a Nordic multicenter study. Scand J Gastroenterol 2012; 47(8–9): 1021–1029. doi: 10.3109/00365521.2012.685754.

77. Velayos FS, Liu L, Lewis JD et al. Prevalence of colorectal cancer surveillance for ulcerative colitis in an integrated health care delivery system. Gastroenterology 2010; 139(5): 1511–1518. doi: 10.1053/j.gastro.2010.07.039.

78. Batta AK, Salen G, Holubec H et al. Enrichment of the more hydrophilic bile acid ursodeoxycholic acid in the fecal water-soluble fraction after feeding to rats with colon polyps. Cancer Res 1998; 58(8): 1684–1687.

79. Tung BY, Emond MJ, Haggitt RC et al. Ursodiol use is associated with lower prevalence of colonic neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Ann Intern Med 2001; 134(2): 89–95.

80. Pardi DS, Loftus EV Jr, Kremers WK et al. Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis. Gastroenterology 2003; 124(4): 889–893.

81. Wolf JM, Rybicki LA, Lashner BA. The impact of ursodeoxycholic acid on cancer, dysplasia and mortality in ulcerative colitis patients with primary sclerosing cholangitis. Aliment Pharmacol Ther 2005; 22(9): 783–788.

82. Stiehl A, Rudolph G, Klöters-Plachky P et al. Development of dominant bile duct stenoses in patients with primary sclerosing cholangitis treated with ursode­oxycholic acid: outcome after endoscopic ­treatment. J Hepatol 2002; 36(2): 151–156.

83. Lindor KD, Knowdley KV, Luketic VA et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 2009; 50(3): 808–814. doi: 10.1002/hep.23082.

84. Chapman R, Fevery J, Kalloo A et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010; 51(2): 660–678. doi: 10.1002/hep.23294.

85. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver di­seases. J Hepatol 2009; 51(2): 237–267. doi: 10.1016/j.jhep.2009.04.009.

Labels
Paediatric gastroenterology Gastroenterology and hepatology Surgery

Article was published in

Gastroenterology and Hepatology

Issue 1

2014 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#