The potential for use of non-thermal plasma in microbiology and medicine


Authors: J. Julák 1;  V. Scholtz 2
Authors‘ workplace: Ústav imunologie a mikrobiologie, 1. lékařská fakulta Univerzity Karlovy, Praha 1;  Ústav fyziky a měřicí techniky, Fakulta chemicko-inženýrská VŠCHT, Praha 2
Published in: Epidemiol. Mikrobiol. Imunol. 69, 2020, č. 1, s. 29-37
Category: Review Article

Overview

The overview provides basic information on non-thermal plasma, its properties, and methods of its generation. It gives examples of its use in the inactivation of bacteria including biofilms, fungi, and prions. Related applications in human medicine, namely in wound healing, antitumor therapy, dental medicine, and dermatomycosis therapy are also mentioned.

Keywords:

Wound healing – Fungi – biofilm – dermatomycosis – electrical discharges – microbial inactivation


Sources

1. Shintani H, Sakudo A (Eds). Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives. Poole: Caister Academic Press; 2016. Dostupné na www: https://dx.doi.org/10.21775/9781910190258.

2. Metelmann HR, von Woedtke T, Weltmann KD (Eds). Comprehensive clinical plasma medicine: Cold physical plasma for medical applications. Cham: Springer; 2019. Dostupné na www: https://dx.doi.org/10.1007/978-3-319-67627-2 .

3. Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D: App. Phys, 2012;45:263001. Dostupné na www: https:// iopscience.iop.org/article/10.1088/0022-3727/45/26/263001.

4. Liu DX, Liu ZC, Chen C, et al. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci Rep, 2016;6:23737. Dostupné na www: http://dx.doi.org/10.1038/srep23737.

5. Liao X, Liu D, Xiang Q, et al. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 2017;75:83–91. Dostupné na www: http://dx.doi.org/10.1016/j.foodcont.2016.12.021 .

6. Laurita R, Barbieri D, Gherardi M, et al. Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med, 3:53–6. Dostupné na www: http://dx.doi.org/10.1016/j.cpme.2015.10.001.

7. Julák J, Hujacová A, Scholtz V, et al. Contribution to the chemistry of plasma activated water. Plasma Phys Rep, 2018;44:125–136. Dostupné na www: https://link.springer.com/article/10.1134/S1063780X18010075.

8. Hozák P, Scholtz V, Khun J, et al. Further contribution to the chemistry of plasma activated water: Influence on bacteria in planktonic and biofilm form. Plasma Phys Rep, 2018;44:799–804. Dostupné na www: https://link.springer.com/article/10.1134/S1063780X18090040.

9. Thirumdas R, Kothakota A, Annapure U, et al. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol, 2018;77:21–31. Dostupný na www: https://doi.org/10.1016/j.tifs.2018.05.007 .

10. Ehlbeck J, Schnabel U, Polak M, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D:Appl Phys, 2011;44:013002. Dostupné na www: http://dx.doi.org/10.1088/0022-3727/44/1/013002.

11. Šimončicová J, Kryštofová S, Medvecká V, et al. Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol, 2019;13:5117–5129. Dostupné na www: https://doi.org/10.1007/s00253-019-09877-x .

12. Khun J, Scholtz V, Hozák P, et al. Various DC driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci Technol, 2018;27:065002. Dostupné na www: https://doi.org/10.1088/1361-6595/aabdd0 .

13. Scholtz V, Julák J. The “cometary” discharge, a possible new type of DC electric discharge in air at atmospheric pressure, and its bactericidal properties. J Phys: Conf Ser, 2010;223:012005. Dostupné na www: https://iopscience.iop.org/article/10.1088/1742-6596/223/1/012005 .

14. Scholtz V, Kvasničková E, Julák J. Microbial inactivation by electric discharge with metallic grid. Acta Phys Polon A, 2013;A124:62–65. Dostupné na www: http://dx.doi.org/10.12693/APhysPolA.124.62 .

15. Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets: A review. Plasma Proces Polym, 2007; 4:777–788. Dostupné na www: https://doi.org/10.1002/ppap.200700066.

16. Nishime TMC, Borges AC, Koga-Ito CY, et al. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf Coat Technol, 2017;312:19–24. Dostupné na www: http://dx.doi.org/10.1016/j.surfcoat.2016.07.076.

17. Nowakowska H, Czylkowski D, Hrycak B, et al. Characterization of a novel microwave plasma sheet source operated at atmospheric pressure. Plasma Sources Sci Technol, 2018;27:085008. Dostupné na www: https://doi.org/10.1088/1361-6595/aad402 .

18. Krueger AP, Smith RF, Go IG. The action of air ions on bacteria. I. Protective and lethal effect on suspensions of staphylococci in droplets. J Gen Physiol, 1957;41:359–381. Dostupné na www: 10.1085/jgp.41.2.359 .

19. Mizuno A, Hori Y. Destruction of living cells by pulsed high-voltage application. IEEE Trans Ind Appl, 1988;24:387–394. Dostupné na www: http://dx.doi.org/10.1109/28.2886.

20. Moisan M, Barbeau J, Moreau S, et al. Low-temperature steriliza-tion using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm, 2001;226:1–21. Dostupné na www: http://dx.doi.org/10.1016/S0378-5173(01)00752-9.

21. Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: New tools for biodecontamination. Biotechnol Adv, 2008;26:610–617. Dostupné na www: http://dx.doi.org/10.1016/j.biotechadv.2008.08.001 .

22. Morent R, De Geyter N. Inactivation of bacteria by non-thermal plasmas. In: Reza Fazel-Rezai (Ed.) Biomedical Engineering – Frontiers and Challenges. InTechOpen, 2011:25–54. Dostupné na www: http://dx.doi.org/10.5772/18610 .

23. Bourke P, Ziuzina D, Han L, et al. Microbiological interactions with cold plasma. J Appl Microbiol, 2017;123:308–324. Dostupné na www: https://doi.org/10.1111/jam.13429.

24. Scholtz V, Julák J, Kříha V. The microbicidal effect of low-temperature plasma generated by corona discharge: Comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Proces and Polym, 2010;7:237–243. Dostupné na www: http://dx.doi.org/10.1002/ppap.200900072.

25. Scholtz V, Julák J, Štěpánková B. Comparison of point-to plane and point-to point corona discharge for the decontamination or sterilization of surfaces and liquids. Plasma Med, 2011;1:21–25. Dostupný na www: http://www.dl.begellhouse.com/journals/5a5b4a3d419387fb,6239f734065d8e3d,27305c4e2624a95a.html.

26. Scholtz V, Kommová L, Julák J. The influence of parameters of stabilized corona discharges on its germicidal effects. Acta Phys Polon A, 2011;A119:803–806. Dostupné na www: http://przyrbwn.icm.edu.pl/APP/PDF/119/a119z6p12.pdf.

27. Sláma J, Kříha V, Julák J, et al. Comparison of dielectric barrier discharge modes fungicidal effect on Candida albicans growth. Probl Atom Sci Technol, 2013;83:237–239. Dostupné na www: http://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_1/article_2013_1_237.pdf.

28. Boudam MK, Moisan M, Saoudi B, et al. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D: Appl Phys, 2006;39:3494–3507. Dostupné na www: https://doi.org/10.1088/0022-3727/39/16/s07.

29. Dobrynin D, Fridman G, Mukhin YV, et al. Cold plasma inactivation of Bacillus cereus and Bacillus anthracis (anthrax) spores. IEEE Trans Plasma Sci, 2010;38:1878–1884. Dostupné na www: https://ieeexplore.ieee.org/document/5437219.

30. Yang B, Chen J, Yu Q, et al. Inactivation of Bacillus spores using a low-temperature atmospheric plasma brush. IEEE Trans Plasma Sci, 2010;99:1–8. Dostupné na www: https://www.semanticscholar.org/paper/Inactivation-of-Bacillus-Spores-Using-a-Atmospheric-Yang-Chen/8df1be3a7d492f098a92b9397b61af5ab1f9f559.

31. Joubert V, Cheype C, Bonnet J, et al. Inactivation of Bacillus subtilis var. niger of both spore and vegetative forms by means of corona discharges applied in water. Water Res, 2013;47:1381–1389. Dostupné na www: http://dx.doi.org/10.1016/j.watres.2012.12.011.

32. Hojnik N, Modic M, Ni Y, et al. Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pres-sure air plasma. Environ Sci Technol, 2019;53:1893−1904. Dostupné na www: https://doi.org/10.1021/acs.est.8b05386 .

33. Puligundla P, Mok C. Inactivation of spores by nonthermal plasmas. World J Microbiol Biotechnol, 2018;34:143. Dostupné na www: https://doi.org/10.1007/s11274-018-2527-3.

34. Abramzon N, Joaquin JC, Bray J, et al. Biofilm destruction by RF high-pressure cold plasma jet. IEEE Trans Plasma Sci, 2006;34:1304–1309. Dostupné na www: http://dx.doi.org/10.1109/TPS.2006.877515.

35. Brelles-Mariño G. Challenges in biofilm inactivation: The use of cold plasma as a new approach. J Bioproces Biotech, 2012;2:1000e107. Dostupné na www: http://dx.doi.org/10.4172/2155-9821.1000e107.

36. Brelles-Mariño G. Gas-discharge plasma: Biofilm inactivation. In.: Leon Shohet J (Ed.). Encyclopedia of Plasma Technology, First Edition. Boca Raton: CRC Press; 2016. Dostupné na www: https://doi.org/10.1201/9781351204958.

37. Galié S, García-Gutiérrez C, Miguélez EM, et al. Biofilms in the foodindustry: Health aspects and control methods. Front Microbiol, 2018;9:898. Dostupné na www: http://dx.doi.org/10.3389/fmicb.2018.00898.

38. Vaňková E, Válková M, Kašparová P, et al. Prevention of biofilm redevelopment on Ti6Al4V alloy by cometary discharge with metallic grid. Contrib Plasma Phys, 2019;59:166–172. Dostupné na www: http://dx.doi.org/10.1002/ctpp.201800044.

39. Julák J, Scholtz V, Vaňková E. Medically important biofilms and non-thermal plasma. World J Microbiol Biotechnol, 2018;34:178. Dostupné na www: https://doi.org/10.1007/s11274-018-2560-2.

40. Latgé J-P. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol, 2007;66:279–290. Dostupné na www: https://doi.org/10.1111/j.1365-2958.2007.05872.x .

41. Akishev Y, Grushin M, Karalnik V, et al. Atmospheric-pressure, nonthermal plasma sterilization of microorganisms in liquids and on surfaces. Pure Appl Chem, 2008;80:1953–1969. Dostupné na www: http://dx.doi.org/10.1351/pac200880091953.

42. Soušková H, Scholtz V, Julák J, et al. The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia microbiol, 2011;56:77–79. Dostupné na www: http://dx.doi.org/10.1007/s12223-011-0005-5.

43. Soušková H, Scholtz V, Julák J, et al. The fungal spores survival under the low-temperature plasma. In: Hensel K, Machala Z, Akishev Y (Eds). Plasma for Bio-Decontamination, Medicine and Food Security. Dordrecht: Springer; 2012. s. 57–66. Dostupné na www: http://dx.doi.org/10.1007/978-94-007-2852-3.

44. Scholtz V, Soušková H, Hubka V, et al. Inactivation of human pathogenic dermatophytes by non-thermal plasma. J Microbiol Meth, 2015;119:53–58. Dostupné na www: http://dx.doi.org/10.1016/j.mimet.2015.09.017.

45. Julák J, Soušková H, Scholtz V, et al. Comparison of fungicidal pro-perties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia microbiol, 2018;63:63–68. Dostupné na www: http://alerts.springer.com/re?l=D0In697yhI6gzce7pIh.

46. Daeschlein G, Scholz S, von Woedtke T, et al. In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Trans Plasma Sci, 2011;39:815–821. Dostupné na www: http://dx.doi.org/10.1109/TPS.2010.2063441.

47. Rogez-Kreuz C, Yousfi R, Soufflet C, et al. Inactivation of animal and human prions by hydrogen peroxide gas plasma sterilization. Infect Control Hosp Epidemiol, 2009;30:769–777. Dostupné na www: https://doi.org/10.1086/598342.

48. Julák J, Janoušková O, Scholtz V, et al. Inactivation of prions using electrical DC discharges at atmospheric pressure and ambient temperature. Plasma Proces Polym, 2011;8:316–323. Dostupné na www: https://doi.org/10.1002/ppap.201000100.

49. Janoušková O, Julák J, Scholtz V, et al. Inactivation of Rml pions using gas plasma generated by negative corona discharge at ambient temperature. Prion, 2011;5:131–131.

50. Elmoualij B, Thellin O, Gofflot S, et al. Decontamination of prions by the flowing afterglow of a reduced-pressure N2–O2 cold plasma. Plasma Proces Polym, 2012;9:612–618. Dostupné na www: http://dx.doi.org/10.1002/ppap.201100194.

51. Scholtz V, Pazlarová J, Soušková H, et al. Nonthermal plasma – the tool for decontamination and disinfection. Biotech Adv, 2015;33:1108–1119. Dostupné na www: http://dx.doi.org/10.1016/j.biotechadv.2015.01.002.

52. Shaw A, Shama G, Iza F. Emerging applications of low temperature gas plasmas in the food industry. Biointerphases, 2015;10:029402. Dostupné na www: http://dx.doi.org/10.1116/1.4914029.

53. Pankaj SK, Keener KM. Cold plasma: background, applications and current trends. Cur Opinion Food Sci, 2017;6:49–52. Dostupné na www: http://dx.doi.org/10.1016/j.cofs.2017.07.008.

54. Chizoba Ekezie FG, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci Technol, 2017;69:46–58. Dostupné na www: http://dx.doi.org/10.1016/j.tifs.2017.08.007.

55. Pietrzaka K, Otlewska A, Danielewicz D, et al. Disinfection of archival documents using thyme essential oil, silver nanoparticles misting and low temperature plasma. J Cult Herit, 2017;24:69–77. Dostupné na www: http://dx.doi.org/10.1016/j.culher.2016.10.011.

56. Patange A, Boehm D, Giltrap M, et al. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Sci Total Environ, 2018;631/632:298–307. Dostupné na www: http://dx.doi.org/10.1016/j.scitotenv.2018.02.269.

57. Fridman G, Friedman G, Gutso A, et al. Applied plasma medicine. Plasma Proces Polym, 2008;5:503–33. Dostupné na www: http://dx.doi.org/10.1002/ppap.200700154.

58. Kong MG, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review. New J Phys, 2009;11:115012. Dostupné na www: http://dx.doi.org/10.1088/1367-2630/11/11/115012.

59. Isbary G, Shimizu T, Li YF, et al. Cold atmospheric plasma devices for medical issues. Expert Rev Med Dev, 2013;10:367–77. Dostupné na www: http://dx.doi.org/10.1586/erd.13.4.

60. Cheruthazhekatt S, Černák M, Slavíček P, et al. Gas plasmas and plasma modified materials in medicine. J Appl Biomed, 2010;8:55–66. Dostupné na www: http://dx.doi.org/10.2478/v10136-009-0013-9.

61. Weltmann K-D, Kolb JF, Holub M, et al. The future for plasma science and technology. Plasma Proces and Polym, 2018;e1800118. Dostupné na www: https://doi.org/10.1002/ppap.201800118.

62. Laroussi M. Plasma medicine: A brief introduction. Plasma, 2018;1:5. Dostupné na www: https://doi.org/10.3390/plasma1010005.

63. Nosenko T, Shimizu T, Morfill GE. Designing plasmas for chronic wound disinfection. New J Phys, 2009;11:115013. Dostupné na www: http://dx.doi.org/10.1088/1367-2630/11/11/115013.

64. Kuo SP, Chen CY, Lin C S, et al. Wound bleeding control by low temperature air plasma. IEEE Trans Plasma Sci, 2010;38:1908–1914. Dostupné na www: http://dx.doi.org/10.1109/TPS.2010.2047028.

65. Lloyd G, Friedman G, Jafr S, et al. Gas plasma: Medical uses and developments in wound care. Plasma Proces Polym, 2010;7:194–211. Dostupné na www: http://dx.doi.org/10.1002/ppap.200900097.

66. Haertel B, von Woedtke T, Weltmann KD, et al. Non-thermal atmospheric-pressure plasma: possible application in wound healing. Biomol Therap, 2014;22:477–490. Dostupné na www: http://dx.doi.org/10.4062/biomolther.2014.105.

67. Gweon B, Kim K, Choe W, et al. Therapeutic uses of atmospheric pressure plasma: Cancer and wound. In: Jo H, Jun HW, Shin J, Lee S (Eds). Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Cham: Springer; 2016. s. 357–385. Dostupné na www: http://dx.doi.org/10.1007/978-3-319-21813-7.

68. Xiong Z. Cold atmospheric pressure plasmas (CAPs) for skin wound healing. In: Yusuf Tutar (Ed.). Plasma medicine – concepts and clinical application. Rijeka: IntechOpen; 2018. s. 121–140. Dostupné na www: http://dx.doi.org/10.5772/intechopen.76093.

69. Arndt S, Schmidt A, Karrer S, et al. Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. Clin Plasma Med, 2018;9:24–33. Dostupné na www: https://dx.doi.org/10.1016/j.cpme.2018.01.002.

70. Darmawati S, Rohmani A, Nurani LH, et al. When plasma jet is effective for chronic wound bacteria inactivation, is it also effective for wound healing? Clin Plasma Med, 219;14:100085. Dostupné na www: https://dx.doi.org/10.1016/j.cpme.2019.100085.

71. Eswaramoorthy N, McKenzie DR. Plasma treatments of dressings for wound healing: a review. Biophys Rev, 2017;9:895–917. Dostupné na www: http://dx.doi.org/10.1007/s12551-017-0327-x.

72. Schlegel J, Köritzer J, Boxhammer V. Plasma in cancer treatment. Clin Plasma Med, 2013;1:2–7. Dostupné na www: http://dx.doi.org/10.1016/j.cpme.2013.08.001.

73. Song K, Li G, Ma Y. A review on the selective apoptotic effect of nonthermal atmospheric-pressure plasma on cancer cells. Plasma Med, 2014;4:193–209. Dostupné na www: http://dx.doi.org/10.1615/PlasmaMed.2015012629.

74. Yan D, Talbot AN, Sherman H, et al. Toward understanding the selective anticancer capacity of cold atmospheric plasma – a model based on aquaporins (Review). Biointerphases, 2015;10:040801. Dostupné na www: http://dx.doi.org/10.1116/1.4938020.

75. Hirst AM, Frame FM, Arya M, et al. Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumour Biol, 2016;37:7021–7031. Dostupné na www: http://dx.doi.org/10.1007/s13277-016-4911-7.

76. Miller V, Lin A, Fridman A. Why target immune cells for plasma treatment of cancer. Plasma Chem Plasma Proc, 2016;36:259–268. Dostupné na www: http://dx.doi.org/10.1007/s11090-015-9676-z.

77. Keidar M, Yan D, Beilis II, et al. Plasmas for treating cancer: opportunities for adaptive and self-adaptive approaches. Trends Biotechnol, 2017;36:586–593. Dostupné na www: http://dx.doi.org/10.1016/j.tibtech.2017.06.013.

78. Bekeschus S, Clemen R, Metelmann HR. Potentiating anti-tumor immunity with physical plasma. Clin Plasma Med, 2018;12:17–22. Dostupné na www: https://dx.doi.org/10.1016/j.cpme.2018.10.001.

79. Pasqual-Melo G, Gandhirajan RK, Stoffels I, et al. Targeting malignant melanoma with physical plasmas. Clin Plasma Med, 2018;10:1–8. Dostupné na www: https://doi.org/10.1016/j.cpme.2018.03.001.

80. Schuster M, Rutkowski R, Hauschild A, et al. Side effects in cold plasma treatment of advanced oral cancer – clinical data and biological interpretation. Clin Plasma Med, 2018;10:9–15. Dostupné na www: https://doi.org/10.1016/j.cpme.2018.04.001.

81. Boehm D, Curtin J, Cullen PJ, et al. Hydrogen peroxide and beyond – the potential of high-voltage plasma-activated liquids against cancerous cells. Anti-cancer Agents Med Chem, 2017;17:1–9. Dostupné na www: http://dx.doi.org/10.2174/1871520617666170801110517.

82. Nguyen L, Lu P, Boehm D, Bourke P, et al. Cold atmospheric plasma is a viable solution for treating orthopedic infection: a review. Biol Chem, 2018;400:77–86. Dostupné na www: https://doi.org/10.1515/hsz-2018-0235.

83. Goree J, Liu B, Drake D, et al. Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans Plasma Sci, 2006;34:1317–1324. Dostupné na www: http://dx.doi.org/10.1109/TPS.2006.878431.

84. Sladek REJ, Filoche SK, Sissons CH, et al. Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Lett Appled Microbiol, 2007;45: 318–323. Dostupné na www: https://doi.org/10.1111/j.1472-765X.2007.02194.x.

85. Cha S, Park YS. Plasma in dentistry. Clin Plasma Med, 2014;2:4–10. Dostupné na www: http://dx.doi.org/10.1016/j.cpme.2014.04.002.

86. Azad A. Dental applications of cold atmospheric plasma. Int J Contemp Med Res, 2017;4:1304–1305. Dostupné na www: https://www.researchgate.net/publication/325848621_Dental_Applications_of_Cold_Atmospheric_Plasma.

87. Gherardi M, Tonini R, Colombo V. Plasma in dentistry: Brief history and current status. Trends Biotechnol, 2017;36:583–585. Dostupné na www: http://dx.doi.org/10.1016/j.tibtech.2017.06.009.

88. Sladek REJ, Stoffels E, Walraven R, et al. Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci, 200432:1540–1543. Dostupné na www: https://ieeexplore.ieee.org/document/1341519.

89. Schaudinn C, Jaramillo D, Freire MO, et al. Evaluation of a nonthermal plasma needle to eliminate ex vivo biofilms in root canals of extracted human teeth. Int Endodont J, 2013;46:930–937. Dostupné na www: http://dx.doi.org/10.1111/iej.12083.

90. Lee HW, Nam SH, Mohamed AAH, et al. Atmospheric pressure plasma jet composed of three electrodes: Application to tooth bleaching. Plasma Proces Polym, 2010;7:274–280. Dostupné na www: http://dx.doi.org/10.1002/ppap.200900083.

91. Heinlin J, Morfill G, Landthaler M, et al. Plasma medicine: possible applications in dermatology. J German Soc Dermatol, 2010;8:968–976. Dostupné na www: http://dx.doi.org/10.1111/j.1610-0387.2010.07495.x.

92. King M. Focus on Plasma: The application of plasma devices in aesthetic medicine. PMFA News, 2017;4:5. Dostupné na www: https://www.thepmfajournal.com/features/post/focus-on-plasma-the-application-of-plasma-devices-in-aesthetic-medicine.

93. Julák J, Scholtz V. Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clin Plasma Med, 2013;1:31–34. Dostupné na www: http://dx.doi.org/10.1016/j.cpme.2013.09.002.

94. Isbary G, Köritzer J, Mitra A, et al. Ex vivo human skin experiments for the evaluation of safety of new cold atmospheric plasma devices. Clin Plasma Med, 2013;1:36–44. Dostupné na www: http://dx.doi.org/10.1016/j.cpme.2012.10.001.

95. Julák J, Soušková H, Živná H, et al. Možnosti využití nízkoteplotního plazmatu v léčbě plísňových onemocnění. Veterinární lékař, 2016;14:199–204. Dostupné na www: http://www.tigis.cz/images/stories/Veterinarni_Lekar/2016/42016/VL_clanek_Julak_4_2016.pdf .

96. Scholtz V, Soušková H, Švarcová M, et al. Inactivation of dermatophyte infection by nonthermal plasma on animal model. Med Mycol, 2017;55:422–428. Dostupné na www: https://doi.org/10.1093/mmy/myw094.

97. Švarcová M, Julák J, Hubka V, et al. Treatment of a superficial mycosis by low-temperature plasma: Case report. Prague Med Rep, 2014;115:73–78. Dostupné na www: http://pmr.cuni.cz/file/5683/PMR2014A0008.pdf .

98. Scholtz V, Soušková H, Švarcová M, et al. Inactivation of dermatophytes by non-thermal plasma in vitro and a case report. Dermatophyte workshop Utrecht, Utrecht, 2016. Dostupné na www: http://www.isham.org/members/Dermatophyte/lectures/Sunday/18_Svarcova-Inactivation-plasma.pdf .

99. Lux J, Dobiáš R, Scholtz V, et al. Effectiveness of onychomycosis therapy using non-thermal plasma: Preliminary results. ASM Microbe, Atlanta, USA, 2018. Dostupné na www: https://www.researchgate.net/publication/328578143_Effectiveness_of_Onychomycosis_Therapy_Using_Non_-Thermal_Plasma_Preliminary_Results.

100. Lux J, Dobiáš R, Scholtz V, et al. Možnosti terapie onychomykózy nízkoteplotním plazmatem – kazuistiky. Čs dermatol, 2018;93:266–271. Dostupné na www: https://www.prolekare.cz/casopisy/cesko-slovenska-dermatologie/2018-6-12/moznosti-terapie-onychomykozy-nizkoteplotnim-plazmatem-107987.

101. Pilot Study to Evaluate Plasma Treatment of Onychomycosis. US National Library of Medicine, NCT01819051. Dostupné na www: https://clinicaltrials.gov/ct2/show/NCT01819051.

102. Evaluating the Safety, Tolerability and Preliminary Efficacy of Plasma in Improving the Appearance of Onychomycosis. US National Library of Medicine, NCT02724384. Dostupné na www: https://clinicaltrials.gov/ct2/showNCT02724384?recrs=ab&cond=Onychomycosis&cntry1=NA%3AUS&draw=1&rank=10.

103. Early Feasibility Study to Evaluate the Efficacy of the RenewalNail™ Plasma Treatment System in Patients With Onychomycosis (Fungal Nail). US National Library of Medicine, NCT03216200. Dostupné na www: https://clinicaltrials.gov/ct2/show/3216200?recrs=ab&cond=Onychomycosis&cntry1=NA%3AUS&draw=1&rank=3.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology

Article was published in

Epidemiology, Microbiology, Immunology

Issue 1

2020 Issue 1

Most read in this issue
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account