#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Některé aspekty imunitního systému v patogenezi Alzheimerovy choroby


Authors: Z. Chmátalová;  A. Skoumalová
Authors‘ workplace: Ústav lékařské chemie a klinické biochemie 2. LF UK a FN v Motole, Praha
Published in: Epidemiol. Mikrobiol. Imunol. 65, 2016, č. 2, s. 79-84
Category: Review Article

Overview

Alzheimerova choroba je závažné neurodegenerativní one­mocnění a nejčastější příčina demence v populaci nad 60 let. Ukládání betaamyloidu a tvorba neurofibrilárních klubek v mozku předchází vznik demence o mnoho let. Neúspěch léčby omezující ukládání betaamyloidu vede k přehodnocování teorií o patofyziologii tohoto onemocnění. V této souvislosti se výzkum zaměřuje na roli zánětu jako spouštěcího momentu i doprovodného procesu neurodegenerace. V našem článku shrneme některé poznatky týkající se imunitních funkcí jednotlivých buněk mozku a jejich vztahu ke vzniku a rozvoji Alzheimerovy choroby ve světle hypotézy imunitní reakce.

KLÍČOVÁ SLOVA:
Alzheimerova choroba – imunitní odpověď – zánět – buňky mozku

ÚVOD

Alzheimerova choroba (ACH) je závažné neurodegenerativní onemocnění a nejčastější příčina demence v populaci nad 60 let. Je známo, že ukládání betaamyloidu a hyperfosforylovaného tau proteinu v mozku předchází vznik demence o mnoho let [27].

Tau protein je za fyziologických podmínek fosforylován pouze v malé míře a zajišťuje stabilizaci mikrotubulů. U ACH je tau protein v mozkové tkáni hyperfosforylován, čímž dochází k disociaci podpůrného komplexu tau – mikrotubuly. Hyperfosforylovaný tau protein agreguje a následně se ukládá intracelulárně. Tato intracelulární klubka hyperfosforylovaného tau proteinu a destabilizace mikrotubulů se mohou podílet na změnách axonálního transportu a oslabení synapsí, což vede ke zhoršení kognitivních funkcí [46].

Dosud upřednostňovaná amyloidní hypotéza pokládá za klíčový faktor patogeneze ACH tvorbu a hromadění patologické formy proteinu, tzv. amyloidu β (Aβ). Aβ vzniká sestřihem membránově vázaného proteinu tzv. prekurzoru Aβ. Tento protein může být alternativně degradován různými enzymy. V případě štěpení enzymem β-sekretázou a γ-sekretázou vzniká krátký peptid Aβ, který má tendenci se kumulovat v extracelulárním prostoru CNS a tvořit fibrilární amyloidní molekuly [32]. Selhání léčby zasahující do metabolismu Aβ vede v posledních letech k přehodnocování teorie o patofyziologii tohoto onemocnění [30]. V této souvislosti se výzkum zaměřuje na úlohu zánětu jako spouštěcího momentu i doprovodného procesu neurodegenerace [23, 74]. Je známo, že rozvoj ACH je kromě ukládání Aβ a hyperfosforylovaného tau proteinu doprovázen celou řadou patologických změn v mozkové tkáni, kterých se účastní buňky CNS a které jsou doprovázeny produkcí zánětlivých mediátorů a volných radikálů. Tyto procesy jsou velice komplexní, navzájem se potencují a i přes intenzivní výzkum dané problematiky není stále zcela jasné, co je primární příčinou rozvoje ACH.

Pochopení složitých patologických procesů odehrávajících se v mozku u ACH a jejich vzájemných vztahů je klíčem pro nalezení správné léčby této závažné neurodegenerativní choroby.

Centrální nervová soustava (CNS) patří mezi imunologicky privilegované tkáně. Má schopnost lokální tvorby protizánětlivých mediátorů [51, 14], konstitutivní exprese Fas ligandu [20], disponuje stálou pohotovostní zásobou „fakultativních“ makrofágů a mikroglie a astrocyty plní také nezastupitelnou imunologickou roli [23]. Z výše uvedeného je zřejmé, že CNS je pod permanentním a dokonale řízeným imunologickým dohledem. Pokud ale tento vysoce specializovaný systém na některé z úrovní selže, stává se pro mozkové buňky velmi nebezpečným a destruktivním.

V dalším textu se budeme zabývat jednotlivými buňkami CNS a to především jejich imunitními funkcemi a vztahem k možnému vzniku a progresi ACH.

BUNĚČNÝ SYSTÉM CNS A JEHO VZTAH K ACH

Mikroglie

Mikroglie se v souvislosti se zánětem v CNS považují za klíčové. V CNS plní mikroglie roli obranné imunokompetentní buňky a řídí imunitní odpověď CNS [64]. Ve své podstatě jsou mikroglie makrofágy schopnými promptní reakce na různé stresové stimuly. Exprimují na svém povrchu hlavní histokompatibilní komplex druhého typu (MHC II) a mohou produkovat prozánětlivé i protizánětlivé cytokiny, dále chemokiny, reaktivní formy kyslíku a některé proteiny komplementu jako například C1q, C3, C4 a C9 fragment [42, 66]. V závislosti na podmínkách, které vedly k aktivaci mikroglií, pak mohou mít mikroglie neuroprotektivní či naopak neurotoxický účinek [23, 60].

Amyloidní plaky i samotný Aβ působí na mikroglie jako chemoatraktans. To vede k jejich hromadění v okolí amyloidní patologické léze a spouští jejich aktivaci. Mikroglie na svém povrchu exprimují tzv. scavengerové receptory, díky nimž adherují na amyloidní struktury, následně začínají tvořit reaktivní sloučeniny kyslíku (ROS) [26] a dochází k imobilizaci buněk [18]. Dochází ke zvýšené povrchové expresi MHC II, produkci prozánětlivých cytokinů, jako je interleukin (IL)-1β, IL-6, tumor nekrotizující faktor α (TNF-α) a interferon γ (IFN-γ) [35, 59] a cytokinů negativně regulujících imunitní odpověď, jako je růstový transformující faktor β (TGF-β), IL-10, IL-12 a IL-18 [2,51]. Fagocytózou se mikroglie snaží odstranit nerozpustné fragmenty amyloidu, které se hromadí v mozkové tkáni. Současně dochází k tvorbě ROS i indukci NO syntázy. Oba tyto produkty jsou primárně určené pro usnadnění odstranění amyloidních lézí. Jejich vedlejším efektem může ale být poškození okolních buněk – neuronů, které je mnohdy závažnější než poškození samotným Aβ [70].

Zajímavé je, že charakteristické nakupení amyloidních plaků v určitých regionech CNS nemusí vycházet z přímého ukládání plaků v těchto oblastech, ale může být způsobené migrací mikroglií s fagocytovaným amyloidem. Mikroglie s pohlceným amyloidem se přesouvají do mozkových cév a komor ve snaze zbavit mozek amyloidu, ovšem jejich degradační kapacita není příliš velká a amyloid v nich zůstává uložen v nezměněné formě po řadu dní [64] nebo ho mikroglie nedokáží degradovat vůbec. Perzistující amyloid vyvolává morfologické a funkční změny mikroglií [38]. Na druhé straně je známo, že se mikroglie podílejí na degradaci amyloidu uvolněním inzulin degradujícího enzymu (IDE). Jedná se o malý proteolytický enzym, který se kromě štěpení amyloidu podílí i na štěpení inzulinu a glukagonu. Nedostatek či snížená aktivita IDE vede ke snížené degradaci amyloidu a zároveň k hyperinzulinémii a hyperglykémii, což jsou faktory, které mohou negativně ovlivnit progresi ACH zvýšenou tvorbou ROS a sekundárních reaktivních aldehydů [19, 31].

Na aktivaci mikroglií se může podílet i tau protein [44]. Bylo prokázáno, že existuje vztah mezi výskytem mikroglií a neurofibrilárních klubek v mozkové tkáni. Asociaci mezi aktivovanými mikrogliemi, které ve zvýšené míře exprimují IL-1, a neurofibrilárními klubky je možné sledovat v celém průběhu jejich tvorby a kumulace [52, 55]. In-vitro studie ukázaly, že produkce IL-1 vede k neuronální produkci tau-fosforylujícího enzymu MAPK-p38 a také samotné fosforylaci (aktivaci) tohoto enzymu [33], což se může významně odrazit na progresi tvorby neurofibrilárních klubek i samotného onemocnění. Pro roli mikroglií v patofyziologii ACH svědčí i studie in-vivo prokazující zvýšené vychytávání ligandu vážícího se na aktivovované mikroglie v mozku pacientů s ACH v porovnání s kontrolami [75]. Intenzita signálu navíc inverzně korelovala s kognitivním výkonem [17].

Astrocyty

Astrocyty jsou nejhojněji zastoupené buňky CNS a mají podpůrnou funkci ve vztahu k neuronům. Interakce s neurony zahrnuje sekreci a recyklaci neurotransmiterů, udržování iontové rovnováhy a pH, regulaci energetického metabolismu, tlumení důsledků oxidačního stresu a synaptickou přestavbu [73]. Je dokázáno, že astrocyty zvyšují počet vyzrálých funkčních spojení neuronů a jsou nezbytné pro zachování synapsí in-vitro [57, 65]. Další významnou funkcí astrocytů je jejich podíl na tvorbě a udržení hematoencefalické bariéry. Astrocyty mohou podléhat proliferaci, morfologickým změnám a může u nich dojít ke zvýšení exprese kyselého fibrilárního proteinu. Tento proces se označuje jako astroglióza a doprovází řadu neurodegenerativních onemocnění. Na proces astrogliózy lze nahlížet jako na zhoubný proces vedoucí k zániku funkčních neuronů v důsledku vytvoření gliální jizvy, která má za úkol oddělit zdravou tkáň od tkáně poškozené nebo zanícené. Na druhou stranu je astroglióza doprovázena tvorbou růstových faktorů a neurotropinů a je možné, že může mít neuroprotektivní efekt [16, 58].

Astrocyty mají ještě další významnou úlohu. Podobně jako mikroglie i astrocyty rychle reagují na patologické podměty změnami ve své  morfologii, antigenicitě a funkci. Důsledkem aktivace astrocytů může být jak destrukce, tak i ochrana nervové tkáně.

Astrocyty mohou produkovat řadu cytokinů, jako je IL-1, IL-6, IL-10, IFN-α a IFN-β, kolonie stimulující faktory, TNF-α a TGF-β nebo chemokiny jako například IL-8, monocytový chemoatraktivní protein-1 (MCP-1) nebo RANTES [13, 45]. Podobně jako mikroglie mohou produkovat velké množství prozánětlivých mediátorů, jako jsou prostaglandiny, leukotrieny, tromboxany, koagulační faktory, složky komplementu nebo proteázy a jejich inhibitory [64]. Na svém povrchu exprimují MHC II jako profesionální antigen prezentující buňky. Exprese je vyvolána a dále regulována pomocí neurotransmiterů, neuropeptidů a cytokinů, z nichž nejvýznamnější roli hraje IFN-γ. Astrocyty tedy spoluurčují typ a rozsáhlost imunitní a zánětlivé odpovědi CNS.

U modelů transgenních myší [49], stejně jako u pacientů s ACH, se reaktivní astrocyty nacházejí v těsném okolí amyloidních plaků. MCP-1 uvnitř plaků působí na astrocyty silně chemotakticky a indukuje expresi různých receptorů na jejich povrchu (membránově asociované proteoglykany nebo scavenger receptor-like receptory), což vede k akumulaci reaktivních astrocytů okolo plaků. Možným vysvětlením tohoto nahromadění astrocytů okolo plaků je proces astrogliózy a vytvoření ochranné gliální jizvy, která izoluje amyloidní plak od okolní tkáně [72]. Druhým vysvětlením nahromaděných astrocytů okolo plaků je jejich schopnost plaky degradovat. Astrocyty pohlcují amyloid v komplexu s ApoE [63] a následně ho enzymaticky degradují pomocí neprilyzinu, inzulin-degradujícího enzymu [19] nebo metaloproteinázy-9 [79]. Funkce či dysfunkce reaktivních astrocytů tedy může hrát významnou roli v závažnosti a rychlosti progrese ACH.

Aktivace astrocytů amyloidem vede také k produkci chemokinů, cytokinů a reaktivních sloučenin kyslíku a dusíku, které mohou zapříčinit neuronální poškození [56]. IL-1 a IL-6 stimulují produkci α1-antichymotripsinu, proteinu akutní fáze. IL-1 podporuje zvýšenou produkci NO astrocyty, který přímo poškozuje nervové buňky [11, 25]. Navíc chemokiny produkované astrocyty působí jako chemoatraktans pro mikroglie, jejichž prozánětlivé mediátory prohlubují zánětlivou reakci a poškození buněk.

Oligodendrocyty

Oligodendrocyty vytváří myelinovou pochvu okolo axonů a plní v CNS především ochrannou funkci [73]. Myelin má unikátní složení, je bohatý na lipidy a obsahuje pouze velmi malé množství vody. To, spolu se strukturní jedinečností myelinu, umožňuje neuronům rychlé saltatorní vedení vzruchů po axonech, přesný přenos vzruchů na dlouhé vzdálenosti a efektivní využití prostoru [5].

U pacientů s ACH lze pozorovat určité abnormality a poškození myelinu v bílé hmotě [50] stejně jako demyelinizaci axonů po expozici neuronů amyloidu v šedé kůře mozkové [41]. Jantaratnotai et al. [28] ukázali, že injektováním nanomolárního množství amyloidu do corpus callosum dochází k proliferaci mikroglií s následným poškozením myelinu a ztrátě oligodendrocytů. Oligodendrocyty exprimují mRNA pro velké množství komplementových proteinů [24], a jsou proto považovány za primární příčinu vysokých hladin komplementových složek v oblastech zasažených patologickým procesem u ACH. Oligodendrocyty jsou navíc velmi náchylné k oxidačnímu poškození, protože obsahují velmi malé množství glutathionu oproti jejich vysokému obsahu železa [3, 29].

Neurony

Neurony byly dlouhou dobu považovány za pouhé terče poškození aktivovaným komplementem bez možnosti vlastní ochrany. Bylo ale prokázáno, že i neurony samy o sobě mohou sehrát důležitou roli v zánětlivém procesu a neurodegeneraci. Neurony pacientů s ACH obsahují zvýšené množství mRNA pro komplementové proteiny klasické cesty oproti neuronům kontrolních dobrovolníků [53, 66]. Dále byla pozorována zvýšená exprese pentraxinů, C-reaktivního proteinu, amyloidu P [77], IL-1 [21] a TNF-α [48,51]. Produkce těchto prozánětlivých mediátorů může zpustit nebo prohloubit zánětlivou reakci vedoucí k poškození a případné smrti neuronů.

K poškození neuronů může vést i produkce prostanoidů cyklooxygenázou 2. Jedná se o inducibilní enzym, jehož exprese v mozkové tkáni je řízena synaptickou aktivitou [78] a lze na ni tedy pohlížet jako na fyziologický děj v některých podtřídách neuronů nebo dochází k indukci exprese tohoto proteinu v přítomnosti prozánětlivých mediátorů. V podmínkách zánětu pak tvořící se prostanoidy prohlubují zánětlivou reakci a tím možné poškození přítomných buněk. Dalším inducibilním enzymem reagujícím na prozánětlivé mediátory je NO syntáza [22]. Dlouhodobá stimulace tohoto enzymu může vést ke zvýšené produkci peroxynitritu. Peroxynitrit stejně jako NO produkovaný ve zvýšené míře gliálními a neuronálními buňkami mohou narušovat funkci neuronů a vést k buněčné smrti [8]. Na druhé straně neurony produkují velké množství molekul, které je mají chránit před poškozením zánětlivým procesem. Exprimují molekuly CD22 [43] a CD200 [69] a velmi důležitý protein CD59 [75,71], který inhibuje cytolýzu zprostředkovanou C fragmentem komplementového proteinu C5b-9. U ACH jsou ale některé z těchto ochranných mechanismů nedostatečné nebo zcela nefunkční. Dochází proto k silnému poškození neuronů zánětlivým procesem vyvolaným depozity amyloidu v jejich okolí [1, 71].

SYSTÉM KOMPLEMENTU A JEHO VZTAH K ACH

Komplementový systém je nedílnou součástí imunitního systému a je tvořen celou řadou proteinů a proteáz. Po aktivaci komplementu dochází ke kaskádovitým reakcím vedoucím k vytvoření devítisložkového efektorového komplexu, tzv. membránového lytického komplexu. Jsou známy dvě různé cesty aktivace komplementu, a to cesta klasická a alternativní. Přímý vztah k rozvoji a progresi ACH má klasická i alternativní cesta aktivace komplementu. Bylo prokázáno, že jak Aβ, tak i tau protein mohou aktivovat klasickou cestu, alternativní aktivace komplementové kaskády je zprostředkována fibrilární formou Aβ [1, 34, 54, 61]. Kromě Aβ a tau proteinu mohou působit jako aktivátory klasické cesty komplementu i C-reaktivní protein, sérový amyloid P a Hagemanův faktor, které se nacházejí v okolí senilních plaků [39].

V průběhu klasické cesty aktivace komplementu dochází k vazbě C1q fragmentu na aktivující molekulu a poté k proteolytickému štěpení C2 a C4 fragmentu. Vzniklý C2aC4b komplex působí jako C3-konvertáza a po rozštěpení C3 fragmentů vzniká C5-konvertáza. Rozštěpené fragmenty C5b vytvoří komplex se složkami C6, C7, C8 a několika C9 za vzniku membránového komplexu, který zprostředkuje lytický rozpad dané buňky. Jelikož nežádoucí či nadměrná aktivace komplementu může vést k rozsáhlému poškození buněk, je komplementová kaskáda kontrolována plazmatickými a membránovými inhibitory. Klasická cesta aktivace je kontrolována již na počátku C1-inhibitorem, který blokuje aktivaci fragmentu C1. Molekula CD55 neboli DAF protein inaktivuje C3-konvertázu a protein CD59 blokuje závěrečnou fázi tvorby lytického komplexu.

V souvislosti s ACH byla zjištěna zvýšená aktivace komplementu a také nadprodukce mRNA pro jeho jednotlivé složky [9, 39]. Dále bylo prokázáno, že inhibitory komplementové kaskády jako C1-inhibitor nebo CD59 efektivně neblokují nadměrnou aktivaci komplementu u pacientů s ACH [76] a navíc mohou být hladiny CD59 i významně snížené [47]. Membránový lytický komplex pak není efektivně blokován a dochází k nevratnému poškození i plně funkčních neuronů.

Na druhou stranu nelze opomenout studie, které prokázaly, že komplement může mít i neuroprotektivní účinek [7]. Inhibice komplementu u ACH myších modelů vedla k vyšší míře tvorby amyloidních plaků a rychlejší neurodegeneraci [37].  

DYNAMIKA ZÁNĚTLIVÝCH PROCESŮ V ROZVOJI ACH

V preklinické a prodromální fázi ACH dochází nejprve k aktivaci mikroglií jako reakci na ukládání amyloidu a obzvláště v mozkové kůře se začínají tvořit komplexy mikroglie-amyloid. Aktivované mikroglie produkují reaktivní sloučeniny a radikály, které mají usnadnit odstranění amyloidu. Aktivace mikroglií předchází neuronálnímu poškození i patologickým procesům vyvolaným hyperfosforylací tau proteinu [67,44]. Kromě mikroglií se v těsném okolí amyloidu začínají objevovat i aktivované astrocyty. Mikroglie i astrocyty postupně produkují kromě reaktivních sloučenin i prozánětlivé a protizánětlivé cytokiny, a udržují tak zánětlivou reakci ve fyziologické rovnováze. V prodromálním stadiu rozvoje ACH dochází kromě benefitního zánětlivého procesu, který má napomoci odstranění kumulujícího se amyloidu, i k reparativním procesům. Tyto reparativní procesy mají eliminovat případné trvalé poškození mozkové tkáně volnými radikály a mají zajistit plnou obnovu její funkčnosti. Bylo prokázáno, že dochází ke zvýšené expresi genů kódujících buněčnou proliferaci a diferenciaci, dále pak genů pro adhezivní molekuly a enzymů účastnících se syntézy prostaglandinů [6].

V průběhu progrese demence ACH typu se již uplatňuje zejména zánětlivý proces a postupně dochází k aktivaci všech typů mozkových buněk. Mozek se snaží lokální zánětlivou reakcí o izolaci a odstranění patologických depozit amyloidu. Reparační mechanismy, stejně jako produkce protizánětlivých cytokinů, jsou utlumeny. Jednotlivé buňky produkují především prozánětlivé mediátory, cytokiny a také složky komplementu. Buňky CNS mají schopnost produkovat jednotlivé složky komplementu, ale pouze neurony mají v omezené míře schopnost produkovat jeho inhibitory. Produkce inhibitorů se již však nezvyšuje, nebo je dokonce snížena, a není tak možné zabránit masivní destrukci nervových buněk [47, 71, 76].

Kromě vzájemné potenciace aktivovaných mozkových buněk a lytické aktivity komplementu se při rozvoji demence při ACH v patofyziologii uplatňuje zánětem poškozená mozková tkáň v okolí amyloidu. V důsledku zánětu a poškození radikály totiž dochází ke změně antigenicity nervové tkáně, k zahájení imunitní odpovědi a silnému prohloubení a rozšíření zánětlivého procesu. Tato silná imunitní odpověď může mít za následek další funkční poškození mozku. Navíc aktivace velkého počtu mikroglií a astrocytů může vést k porušení celkové antioxidační rovnováhy a k přímému poškození mozkové tkáně vzdálené od ohniska zánětu volnými radikály a reaktivními sloučeninami [23, 40].

MODULACE IMUNITNÍ ODPOVĚDI JAKO TERAPEUTICKÝ CÍL

Vzhledem k těsnému spojení aktivace imunitní odpovědi a patogeneze ACH se stal imunitní systém mozkové tkáně a jeho modulace lákavým a nadějným terapeutickým cílem. Existuje celá řada nesteroidních protizánětlivých preparátů, jako například prednison, hydroxychlorochinon, simvastatin, atorvastatin, rosiglitason či aspirin. Bohužel u žádné z těchto látek nebyl prokázán terapeutický účinek a významné zlepšení kognitivních funkcí u pacientů v prodromální fázi ACH [40]. V rámci nedávné klinické studie byly testovány preparáty celecoxib a naproxen. Ačkoliv musela být studie předčasně ukončena kvůli zvýšenému riziku kardiovaskulárních komplikací u některých skupin léčených celecoxibem, u naproxenu byl pozorován mírný protektivní účinek u asymptomatických pacientů v prodromální fázi ACH [10].

Byla provedena i studie na testování účinnosti intravenózně podávaného imunoglobulinu IVIg pacientům v prodromální fázi ACH. Předpokladem pro úspěšnost této léčby bylo, že směs IVIg obsahuje protilátky proti Aβ, které by mohly snižovat míru tvorby amyloidních plaků [15] a navíc vykazuje silný protizánětlivý účinek [4]. I přes nadějné výsledky v preklinickém testování na myších modelech ACH [36, 62] se bohužel ani tato možnost neukázala jako efektivní v léčbě pacientů s ACH. Předpokládá se, že neúspěšnost podávání IVIg pro zlepšení kognice u pacientů v prodromální fázi ACH byla způsobena pozdním zahájením terapie [68].

ZÁVĚR

Výsledky dosavadních výzkumů ukazují na významnou roli zánětu v patofyziologii ACH ve všech stadiích onemocnění. Stávající informace zatím nedovolují jednoznačně určit, zda je zánět prvotním impulzem k ukládání Aβ a hyperfosforylovaného tau proteinu, či zda je spíše důsledkem negativně pozměněného metabolismu.

Z dosavadních údajů se zdá, že všechny dosud popsané systémy účastnící se vzniku a rozvoje ACH se vzájemně komplexně ovlivňují a doplňují a že imunitní reakce v CNS může v určitých situacích působit neuroprotektivně a v jiných situacích výrazně patologicky. Ačkoliv doposud navrhované strategie léčebných prostředků u ACH zasahujících do imunitního systému selhaly, nebo jsou výsledky provedených studií nejednoznačné, velkou měrou přispěly k hlubšímu pochopení patologických procesů při vzniku a rozvoji ACH. Stejně tak vymezily nepopiratelnou úlohu zánětlivého procesu a pozměněné imunitní odpovědi v mozkové tkáni při zhoršování kognitivního výkonu, a proto i budoucí testovaná léčiva budou pravděpodobně obsahovat protizánětlivé složky.

Poděkování

Ráda bych poděkovala MUDr. M. Vyhnálkovi, Ph.D., z Neurologické kliniky FN Motol za cenné rady a připomínky k textu.

Do redakce došlo dne 29. 6. 2015.

Adresa pro korespondenci:

Mgr. Zuzana Chmátalová

Ústav lékařské chemie a klinické biochemie 2. LF UK a FN v Motole

Plzeňská 221

156 06 Praha 5

e-mail: zuzana.chmatalova@seznam.cz


Sources

1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR et al. Inflammation and Alzheimer´s disease. Neurobiol Aging, 2000;21:383–421.

2. Aloisi F. Imune function of microgli. Glia, 2001;36:165–179.

3. Andersen KJ. Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurocsi, 2004;5:18–25.

4. Baerenwaldt A, Biburger M, Nimmerjahn F. Mechanisms of action of intravenous immunoglobulins. Expert Rev Clin Immunol, 2010;6(3):425–434.

5. Baumann N, Pham-Dinh D. Biology of Oligodendrocyte and Myelin in the mammalian nervous systém. Physiol. Rew, 2001;81:871–927.

6. Blalock EM, Geddes JW, Chen KC et al. Incipient Alzheimer’s disease: microarray corelation analyses reveal major transcriptional and tumor suppressor response. Proc Natl Acad Sci USA, 2004;101:2173–2178.

7. Bohlson SS, Fraser DA, Tenner AJ. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions, Molecular Immunology, 2007; 44:33–43.

8. Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Research, 1992; 587(2): 250–256.

9. Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Molecular Immunology, 2007; 44(5):999–1010.

10. Breitner JC, Baker LD, Montine TJ, Meinert CL, Lyketsos CG, Ashe KH, et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimer’s & dementia. Alzheim Dement J Alzheimer’s Assoc., 2011;7(4):402–411.

11. Butterfield DA, Reed TT, Perluigi M, et al. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res, 2007;1148:243–48.

12. Cagnin A, Brooks DJ, Kennedy AM et al. In-vivo measurement of activated microglia in dementi. Lancet, 2001;358:461–467.

13. Carrero I, Gonzalo MR, Martin B, Sanz-Anquela JM, Arevalo-Serrano J, Gonzalo-Ruiz A. Oligomers of β-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κ-B mechanism in the rat brain. Experimental Neurology, 2012;236:215–227.

14. Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the imunoreactivity of the brain: a new review. Immunol Today, 1992;13:507–512.

15. Dodel RC, Du Y, Depboylu C, Hampel H, Frolich L, Haag A, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry, 2004;75(10):1472–1474.

16. Dong Y, Benveniste EN. Immune function of astrocytes. Glia, 2001; 36: 180–190.

17. Edison P, Archer HA, Gerhard A, et al. Microglia, amyloid, and cognition in Alzheimer's disease: An 11C (R)PK11195-PET and 11C PIB-PET study. Neurobiol Dis, 2008;32:412–419.

18. El Khouri J, Hickman SE, Thomas CA, et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature, 1996;382:716–719.

19. Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA, 2003;100:4162–4167.

20. Flügel A, Schwaiger FW, Neumann H, et al. Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol, 2000;10:353–364.

21. Friedman FJ. Cytokines regulate expression of the Type 1 interleukin-1 receptor in rat hippocampal neurons and glia. Exp Neurol, 2001;168:23–31.

22. Heneka MT, Wiesinger H, Dumitrescu-Ozimek L, Riederer P, Feinstein DL, Klockgether T. Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J Neuropathol Exp Neurol, 2001;60(9):906–916.

23. Heneka NT, Carson M, El Khoury J, et al. Neuroinflammation in Alzheimer´s disease. Lancet Neurol, 2015;14:388–405.

24. Hosokawa M, Klegeris A, Maquire J, et al. Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia, 2003;42:417–423.

25. Chao CC, Hu S, Sheng WH, et al. Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia, 1996;16:276–284.

26. Choi SH, Aid S, Kim HW, Jackson SH, Bosetti F. Inhibition of NADPH oxidase promotes alternative and anti-infl ammatory microglial activation during neuroinfl ammation. J Neurochem, 2012;120:292–301.

27. Jack CR Jr., Jagust WJ, Knopman DS. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol, 2010;9:119–128.

28. Jantaratnotai N, Ryu JK, Kim SU, et al. Amyloid β peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport, 2003;14:1429–1433.

29. Juurlink BH. Response of glial cells to ischemia: Roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev, 1997;21:151–166.

30. Krstic D, Knuesel I. The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer's disease. Acta Neuropathol Commun, 2013;1:62.

31. Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm, 2010;117:949–960.

32. Lemere CA, Masliah E. Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat Rev Neurol, 2010;6:108–119.

33. Li Y, Liu L., Barger SW, Griffin WST. Interleukin- 1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-mapk pathway. J Neurosci, 2003; 23(5):1605–1611.

34. Loeffler DA. Significance of Complement Activation in Alzheimer's Disease. US Neurology, 2008;4(2):52–55. 

35. Lue LF, Rydel L, Brigham EF, et al. Inflammatory repertoire of Alzheimer´s disease and nondemented elderly microglia in vitro. Glia, 2001;35:72–79.

36. Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, et al. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer's disease. J Neuroinflammation, 2010;7:90.

37. Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA. Complement C3 deficiency leads to accelerated amyloid β plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci, 2008; 28(25):6333–6341.

38. Majumdar A, Chung H, Dolios G, et al. Degradation of fibrillar forms of Alzheimer´s amyloid β-peptide by macrophages. Neurolbiol Aging, 2008;29:707–715.

39. McGeer PL, McGeer EG. Local neuroinflamation and the progression of Alzheimer´s disease. Journal of NeuroVirology, 2002; 8:529–538.

40. Meraz-Ríos MA, Toral-Ríos D, Franco-Bocanegra D, Villeda-Hernandéz J, Campos-Pena V. Inflammatory process in Alzeimer´s disease. Front Integr Neurosci, 2013;7:1–15.

41. Mitew S, Kirkcaldie MT, Halliday GM, et al. Focal demyelination in Alzheimer´s disease and transgenic mouse models. Acta Neuropathol, 2010;119:567–577.

42. Moore AH, O´Banion MK. Neuroinflammation and anti-inflammatory therapy for Alzheimer´s disease. Adv Drug Delivery Rev, 2002;54:1627–1656.

43. Mott RT, Ait-Ghezala G, Town T, et al. Neuronal expression of CD22: Novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia, 2004;46:369–379.

44. Mrak RE. Microglia in Alzheimer Brain: A Neuropathological Perspective. Int J Alzheimers Dis, 2012;2012:165021. doi:10.1155/2012/165021.

45. Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinfl ammation, 2005; 2:9.

46. Pimplikar SW. Neuroinflammation in Alzheimer´s Disease: from Pathogenesis to a Therapeutic Target. J Clin Immunol, 2014;34(1):64–69.

47. Price J, Kemper C, Atkinson J, Morris J. Activation of complement cascade, and lack of regulatory proteins, on plaques and tangles in aging and early Alzheimer´s disease. Neurobiol Aging, 2002;23:223.

48. Renauld EA, Spengler RN. Tumor necrosis factor expressed by primary hipocampal neurons SH-SY5Y cells is regulated by alpha(2)-adrenergic receptor activation. J Neurosci Res, 2002;67:264–274.

49. Rodríguez JJ, Olabarria M, Chvatal A, et al. Astroglia in dementia and Alzheimer´s disease. Cell Death Digger, 2009;16:378–385.

50. Roth AD, Ramirez G, Alarcon R, et al. Oligodendrocytes damage in Alzheimer´s disease: β amyloid toxicyty and inflammation. Biol Res, 2005;38:381–387.

51. Rubio-Perez JM, Morillas-Ruiz JM. A review: Inflammatory Process in Alzheimer´smDisease, Role of Cytokines. The Scientific World Journal, 2012;2012:756357. doi:10.1100/2012/756357.

52. Sheffield LG, Marquis JG Berman NEJ. Regional distribution of cortical microglia parallels that of neurofibrillary tangles in alzheimer’s disease. Neurosci Lett, 2000;285(3):165–168.

53. Shen Y, Li R, McGeer EG, et al. Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer disease. Brain res 1997; 769: 391–395.

54. Shen Y, Lue L, Yang L, Roher A, Kuo Y, Strohmeyer R, et al. Complement activation by neurofibrillary tangles in Alzheimer´s disease. Neurosci Lett, 2001;305:165–168.

55. Sheng JG, Mrak RE, Griffin WST. Glial-neuronal interactions in Alzheimer disease: progressive association of il-1α+ microglia and s100β+ astrocytes with neurofibrillary tangle stages. J Neuropath Exp Neurol, 1997;56(3):285–290.

56. Smits HA, Rijsmus A, Van Loon JH, et al. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J Neuroimmunol, 2002;127:160–168.

57. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol, 2010;119:7–35.

58. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci, 2009;32:638–647.

59. Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile infl ammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol, 2010;11:155–161.

60. Streit WJ, Walter SA, Pennel NA. Reactive microgliosis. Prog Neurobiol, 1999;57:563–581.

61. Strohmeyer R, Shen Y, Rogers J. Detection of complement alternative pathway mRNA and proteins in the Alzheimer´s disease brain. Brain Res Mol Brain Res, 2000;81:7–18.

62. Sudduth TL, Greenstein A, Wilcock DM. Intracranial injection of Gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers Aβ in APP/PS1 mice along a different time course than anti-Aβ antibodies. J Neurosci, 2013;33(23):9684–9692.

63. Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance. Exp Neurol, 2012;236:1–5.

64. Tuppo EE, Arias HR. The role of inflamation in Alzheimer´s disease. Int J Biochem Cell Biol, 2005;13:289–305.

65. Ullian EM, Sapperstein SK, Christopherson KS, et al. Control of synapse number by glia. Science, 2001;291:657–661.

66. Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol, 2011;48:1592–1603.

67. Vehmas AK, Kawas CH, Stewart WF, et al. Immune reactive cells in senile plaque and cognitive decline in Alzheimer´s disease. Neurobiol Aging, 2003;24:321–331.

68. Vellas B, Carrillo MC, Sampaio C, Brashear HR, Siemers E, Hampel H, et al. Designing drug trials for Alzheimer’s disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheim Dement J Alzheimer’s Assoc, 2013;9(4):438–444.

69. Walker DG, Dalsing-Hernandez JE, Campbell NA, et al. Decreased expression of CD200 and CD200 receptor in Alzheimer´s disease: A potential mechanism leading to chronic inflammation. Exp Neurol, 2009;215:5–19.

70. Weldon DT, Rogers SD, Ghilardi JR, et al. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of select population of neurons in the rat CNS in vivo. J Neurosci, 1998;18:2161–2173.

71. Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM. The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med, 2010;12:179–192.

72. Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med, 2003;9:453–457.

73. Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease – A bref review of the basic science and clinical literature. Cold Spring Harb Perspect Med, 2012;2:1–23.

74. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med, 2006;12:1005–1015.

75. Yang LB, Meri S, Rogers J, et al. Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer´s disease. J Neurosci, 2000;20:7505–7509.

76. Yasojima K, McGeer EG, McGeer PL. Complement regulators C1 inhibitor and CD59 do not significantly inhibit complement activation in Alzheimer disease. Brain Res, 1999;833: 297–301.

77. Yasojima K, Schwab C, McGeer EG, et al. Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer´s disease. Brain Res, 2000;887:80–89.

78. Yermakova A, O’Banion MK. Cyclooxygenases in the central nervous system: implications for treatment of neurological disorders. Curr Pharm Des, 2000; 6(17):1755–1776.

79. Yin KJ, Cirrito JR, Yan P, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci, 2006; 26:10939–10948.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology

Article was published in

Epidemiology, Microbiology, Immunology

Issue 2

2016 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#