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 ÚVOD
Alzheimerova choroba (ACH) je závažné neurodegene-
rativní onemocnění a nejčastější příčina demence v po-
pulaci nad 60 let. Je známo, že ukládání betaamyloidu 
a hyperfosforylovaného tau proteinu v mozku předchází 
vznik demence o mnoho let [27].
Tau protein je za fyziologických podmínek fosforylován 
pouze v malé míře a zajišťuje stabilizaci mikrotubulů. 
U ACH je tau protein v mozkové tkáni hyperfosforylován, 
čímž dochází k  disociaci podpůrného komplexu tau – 
mikrotubuly. Hyperfosforylovaný tau protein agreguje 
a následně se ukládá intracelulárně. Tato intracelulární 
klubka hyperfosforylovaného tau proteinu a destabilizace 
mikrotubulů se mohou podílet na změnách axonálního 
transportu a oslabení synapsí, což vede ke zhoršení ko-
gnitivních funkcí [46]. 
Dosud upřednostňovaná amyloidní hypotéza pokládá 
za klíčový faktor patogeneze ACH tvorbu a hromadění 
patologické formy proteinu, tzv. amyloidu β (Aβ). Aβ 
vzniká sestřihem membránově vázaného proteinu tzv. 
prekurzoru Aβ. Tento protein může být alternativně 
degradován různými enzymy. V případě štěpení enzy-

mem β-sekretázou a γ-sekretázou vzniká krátký peptid 
Aβ, který má tendenci se kumulovat v extracelulárním 
prostoru CNS a  tvořit fibrilární amyloidní molekuly 
[32]. Selhání léčby zasahující do metabolismu Aβ vede 
v  posledních letech k  přehodnocování teorie o  patofy-
ziologii tohoto onemocnění [30]. V  této souvislosti se 
výzkum zaměřuje na úlohu zánětu jako spouštěcího 
momentu i  doprovodného procesu neurodegenerace 
[23, 74]. Je známo, že rozvoj ACH je kromě ukládání Aβ 
a hyperfosforylovaného tau proteinu doprovázen celou 
řadou patologických změn v mozkové tkáni, kterých se 
účastní buňky CNS a které jsou doprovázeny produkcí 
zánětlivých mediátorů a volných radikálů. Tyto procesy 
jsou velice komplexní, navzájem se potencují a  i  přes 
intenzivní výzkum dané problematiky není stále zcela 
jasné, co je primární příčinou rozvoje ACH. 
Pochopení složitých patologických procesů odehráva-
jících se v mozku u ACH a jejich vzájemných vztahů je 
klíčem pro nalezení správné léčby této závažné neurode-
generativní choroby.
Centrální nervová soustava (CNS) patří mezi imunolo-
gicky privilegované tkáně. Má schopnost lokální tvorby 
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SOUHRN
Alzheimerova choroba je závažné neurodegenerativní one-
mocnění a  nejčastější příčina demence v  populaci nad 
60 let. Ukládání betaamyloidu a  tvorba neurofibrilárních 
klubek v  mozku předchází vznik demence o  mnoho let. 
Neúspěch léčby omezující ukládání betaamyloidu vede 
k přehodnocování teorií o patofyziologii tohoto onemoc-
nění. V této souvislosti se výzkum zaměřuje na roli zánětu 
jako spouštěcího momentu i doprovodného procesu neu-

rodegenerace. V našem článku shrneme některé poznatky 
týkající se imunitních funkcí jednotlivých buněk mozku 
a  jejich vztahu ke vzniku a rozvoji Alzheimerovy choroby 
ve světle hypotézy imunitní reakce. 
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protizánětlivých mediátorů [51, 14], konstitutivní exprese 
Fas ligandu [20], disponuje stálou pohotovostní zásobou 
„fakultativních“ makrofágů a mikroglie a astrocyty plní 
také nezastupitelnou imunologickou roli [23]. Z  výše 
uvedeného je zřejmé, že CNS je pod permanentním a do-
konale řízeným imunologickým dohledem. Pokud ale 
tento vysoce specializovaný systém na některé z úrovní 
selže, stává se pro mozkové buňky velmi nebezpečným 
a destruktivním. 
V dalším textu se budeme zabývat jednotlivými buňkami 
CNS a to především jejich imunitními funkcemi a vzta-
hem k možnému vzniku a progresi ACH. 

BUNĚČNÝ SYSTÉM CNS A JEHO VZTAH K ACH

Mikroglie 
Mikroglie se v souvislosti se zánětem v CNS považují za 
klíčové. V CNS plní mikroglie roli obranné imunokom-
petentní buňky a řídí imunitní odpověď CNS [64]. Ve své 
podstatě jsou mikroglie makrofágy schopnými promptní 
reakce na různé stresové stimuly. Exprimují na svém 
povrchu hlavní histokompatibilní komplex druhého 
typu (MHC II) a mohou produkovat prozánětlivé i pro-
tizánětlivé cytokiny, dále chemokiny, reaktivní formy 
kyslíku a některé proteiny komplementu jako například 
C1q, C3, C4 a C9 fragment [42, 66]. V závislosti na pod-
mínkách, které vedly k aktivaci mikroglií, pak mohou 
mít mikroglie neuroprotektivní či naopak neurotoxický 
účinek [23, 60]. 
Amyloidní plaky i samotný Aβ působí na mikroglie jako 
chemoatraktans. To vede k jejich hromadění v okolí amy-
loidní patologické léze a spouští jejich aktivaci. Mikroglie 
na svém povrchu exprimují tzv. scavengerové receptory, 
díky nimž adherují na amyloidní struktury, následně 
začínají tvořit reaktivní sloučeniny kyslíku (ROS) [26] 
a dochází k imobilizaci buněk [18]. Dochází ke zvýšené 
povrchové expresi MHC II, produkci prozánětlivých cyto-
kinů, jako je interleukin (IL)-1β, IL-6, tumor nekrotizující 
faktor α (TNF-α) a interferon γ (IFN-γ) [35, 59] a cytokinů 
negativně regulujících imunitní odpověď, jako je růstový 
transformující faktor β (TGF-β), IL-10, IL-12 a IL-18 [2,51]. 
Fagocytózou se mikroglie snaží odstranit nerozpustné 
fragmenty amyloidu, které se hromadí v mozkové tkáni. 
Současně dochází k  tvorbě ROS i  indukci NO syntázy. 
Oba tyto produkty jsou primárně určené pro usnadnění 
odstranění amyloidních lézí. Jejich vedlejším efektem 
může ale být poškození okolních buněk – neuronů, které 
je mnohdy závažnější než poškození samotným Aβ [70]. 
Zajímavé je, že charakteristické nakupení amyloidních 
plaků v určitých regionech CNS nemusí vycházet z pří-
mého ukládání plaků v těchto oblastech, ale může být 
způsobené migrací mikroglií s fagocytovaným amyloi-
dem. Mikroglie s pohlceným amyloidem se přesouvají do 
mozkových cév a komor ve snaze zbavit mozek amyloidu, 
ovšem jejich degradační kapacita není příliš velká a amy-
loid v nich zůstává uložen v nezměněné formě po řadu 
dní [64] nebo ho mikroglie nedokáží degradovat vůbec. 
Perzistující amyloid vyvolává morfologické a  funkční 
změny mikroglií [38]. Na druhé straně je známo, že se 
mikroglie podílejí na degradaci amyloidu uvolněním 
inzulin degradujícího enzymu (IDE). Jedná se o  malý 
proteolytický enzym, který se kromě štěpení amyloidu 
podílí i na štěpení inzulinu a glukagonu. Nedostatek či 

snížená aktivita IDE vede ke snížené degradaci amyloidu 
a zároveň k hyperinzulinémii a hyperglykémii, což jsou 
faktory, které mohou negativně ovlivnit progresi ACH 
zvýšenou tvorbou ROS a  sekundárních reaktivních al-
dehydů [19, 31]. 
Na aktivaci mikroglií se může podílet i tau protein [44]. 
Bylo prokázáno, že existuje vztah mezi výskytem mikro-
glií a neurofibrilárních klubek v mozkové tkáni. Asociaci 
mezi aktivovanými mikrogliemi, které ve zvýšené míře 
exprimují IL-1, a  neurofibrilárními klubky je možné 
sledovat v celém průběhu jejich tvorby a kumulace [52, 
55]. In-vitro studie ukázaly, že produkce IL-1 vede k neu-
ronální produkci tau-fosforylujícího enzymu MAPK-p38 
a  také samotné fosforylaci (aktivaci) tohoto enzymu 
[33], což se může významně odrazit na progresi tvorby 
neurofibrilárních klubek i samotného onemocnění. Pro 
roli mikroglií v patofyziologii ACH svědčí i studie in-vivo 
prokazující zvýšené vychytávání ligandu vážícího se na 
aktivovované mikroglie v mozku pacientů s ACH v porov-
nání s kontrolami [75]. Intenzita signálu navíc inverzně 
korelovala s kognitivním výkonem [17].

Astrocyty 
Astrocyty jsou nejhojněji zastoupené buňky CNS a mají 
podpůrnou funkci ve vztahu k  neuronům. Interakce 
s neurony zahrnuje sekreci a recyklaci neurotransmiterů, 
udržování iontové rovnováhy a pH, regulaci energetic-
kého metabolismu, tlumení důsledků oxidačního stresu 
a synaptickou přestavbu [73]. Je dokázáno, že astrocyty 
zvyšují počet vyzrálých funkčních spojení neuronů a jsou 
nezbytné pro zachování synapsí in-vitro [57, 65]. Další 
významnou funkcí astrocytů je jejich podíl na tvorbě 
a udržení hematoencefalické bariéry. Astrocyty mohou 
podléhat proliferaci, morfologickým změnám a  může 
u nich dojít ke zvýšení exprese kyselého fibrilárního pro-
teinu. Tento proces se označuje jako astroglióza a dopro-
vází řadu neurodegenerativních onemocnění. Na proces 
astrogliózy lze nahlížet jako na zhoubný proces vedoucí 
k zániku funkčních neuronů v důsledku vytvoření gliální 
jizvy, která má za úkol oddělit zdravou tkáň od tkáně po-
škozené nebo zanícené. Na druhou stranu je astroglióza 
doprovázena tvorbou růstových faktorů a neurotropinů 
a je možné, že může mít neuroprotektivní efekt [16, 58]. 
Astrocyty mají ještě další významnou úlohu. Podobně 
jako mikroglie i  astrocyty rychle reagují na patologic-
ké podměty změnami ve své   morfologii, antigenicitě 
a  funkci. Důsledkem aktivace astrocytů může být jak 
destrukce, tak i ochrana nervové tkáně. 
Astrocyty mohou produkovat řadu cytokinů, jako je 
IL-1, IL-6, IL-10, IFN-α a IFN-β, kolonie stimulující fak-
tory, TNF-α a  TGF-β nebo chemokiny jako například 
IL-8, monocytový chemoatraktivní protein-1 (MCP-1) 
nebo RANTES [13, 45]. Podobně jako mikroglie mohou 
produkovat velké množství prozánětlivých mediátorů, 
jako jsou prostaglandiny, leukotrieny, tromboxany, 
koagulační faktory, složky komplementu nebo proteázy 
a jejich inhibitory [64]. Na svém povrchu exprimují MHC 
II jako profesionální antigen prezentující buňky. Exprese 
je vyvolána a dále regulována pomocí neurotransmiterů, 
neuropeptidů a  cytokinů, z  nichž nejvýznamnější roli 
hraje IFN-γ. Astrocyty tedy spoluurčují typ a rozsáhlost 
imunitní a zánětlivé odpovědi CNS. 
U modelů transgenních myší [49], stejně jako u pacientů 
s ACH, se reaktivní astrocyty nacházejí v těsném okolí 
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amyloidních plaků. MCP-1 uvnitř plaků působí na as-
trocyty silně chemotakticky a indukuje expresi různých 
receptorů na jejich povrchu (membránově asociované 
proteoglykany nebo scavenger receptor-like receptory), 
což vede k akumulaci reaktivních astrocytů okolo plaků. 
Možným vysvětlením tohoto nahromadění astrocytů oko-
lo plaků je proces astrogliózy a vytvoření ochranné gliální 
jizvy, která izoluje amyloidní plak od okolní tkáně [72]. 
Druhým vysvětlením nahromaděných astrocytů okolo 
plaků je jejich schopnost plaky degradovat. Astrocyty 
pohlcují amyloid v komplexu s ApoE [63] a následně ho 
enzymaticky degradují pomocí neprilyzinu, inzulin-de-
gradujícího enzymu [19] nebo metaloproteinázy-9 [79]. 
Funkce či dysfunkce reaktivních astrocytů tedy může hrát 
významnou roli v závažnosti a rychlosti progrese ACH. 
Aktivace astrocytů amyloidem vede také k  produkci 
chemokinů, cytokinů a  reaktivních sloučenin kyslíku 
a dusíku, které mohou zapříčinit neuronální poškození 
[56]. IL-1 a IL-6 stimulují produkci α1-antichymotripsinu, 
proteinu akutní fáze. IL-1 podporuje zvýšenou produkci 
NO astrocyty, který přímo poškozuje nervové buňky [11, 
25]. Navíc chemokiny produkované astrocyty působí jako 
chemoatraktans pro mikroglie, jejichž prozánětlivé me-
diátory prohlubují zánětlivou reakci a poškození buněk. 

Oligodendrocyty 
Oligodendrocyty vytváří myelinovou pochvu okolo axonů 
a plní v CNS především ochrannou funkci [73]. Myelin má 
unikátní složení, je bohatý na lipidy a obsahuje pouze 
velmi malé množství vody. To, spolu se strukturní jedi-
nečností myelinu, umožňuje neuronům rychlé saltatorní 
vedení vzruchů po axonech, přesný přenos vzruchů na 
dlouhé vzdálenosti a efektivní využití prostoru [5]. 
U pacientů s ACH lze pozorovat určité abnormality a poško-
zení myelinu v bílé hmotě [50] stejně jako demyelinizaci 
axonů po expozici neuronů amyloidu v šedé kůře mozkové 
[41]. Jantaratnotai et al. [28] ukázali, že injektováním 
nanomolárního množství amyloidu do corpus callosum 
dochází k proliferaci mikroglií s následným poškozením 
myelinu a ztrátě oligodendrocytů. Oligodendrocyty ex-
primují mRNA pro velké množství komplementových 
proteinů [24], a jsou proto považovány za primární příčinu 
vysokých hladin komplementových složek v oblastech za-
sažených patologickým procesem u ACH. Oligodendrocyty 
jsou navíc velmi náchylné k oxidačnímu poškození, pro-
tože obsahují velmi malé množství glutathionu oproti 
jejich vysokému obsahu železa [3, 29]. 

Neurony 
Neurony byly dlouhou dobu považovány za pouhé terče 
poškození aktivovaným komplementem bez možnosti 
vlastní ochrany. Bylo ale prokázáno, že i neurony samy 
o sobě mohou sehrát důležitou roli v zánětlivém procesu 
a  neurodegeneraci. Neurony pacientů s  ACH obsahují 
zvýšené množství mRNA pro komplementové proteiny 
klasické cesty oproti neuronům kontrolních dobrovol-
níků [53, 66]. Dále byla pozorována zvýšená exprese 
pentraxinů, C-reaktivního proteinu, amyloidu P [77], 
IL-1 [21] a TNF-α [48,51]. Produkce těchto prozánětlivých 
mediátorů může zpustit nebo prohloubit zánětlivou 
reakci vedoucí k poškození a případné smrti neuronů.  
K poškození neuronů může vést i produkce prostanoidů 
cyklooxygenázou 2. Jedná se o inducibilní enzym, jehož 
exprese v mozkové tkáni je řízena synaptickou aktivitou 

[78] a  lze na ni tedy pohlížet jako na fyziologický děj 
v některých podtřídách neuronů nebo dochází k indukci 
exprese tohoto proteinu v  přítomnosti prozánětlivých 
mediátorů. V podmínkách zánětu pak tvořící se prosta-
noidy prohlubují zánětlivou reakci a tím možné poško-
zení přítomných buněk. Dalším inducibilním enzymem 
reagujícím na prozánětlivé mediátory je NO syntáza 
[22]. Dlouhodobá stimulace tohoto enzymu může vést 
ke zvýšené produkci peroxynitritu. Peroxynitrit stejně 
jako NO produkovaný ve zvýšené míře gliálními a neu-
ronálními buňkami mohou narušovat funkci neuronů 
a  vést k  buněčné smrti [8]. Na druhé straně neurony 
produkují velké množství molekul, které je mají chrá-
nit před poškozením zánětlivým procesem. Exprimují 
molekuly CD22 [43] a CD200 [69] a velmi důležitý protein 
CD59 [75,71], který inhibuje cytolýzu zprostředkovanou C 
fragmentem komplementového proteinu C5b-9. U ACH 
jsou ale některé z těchto ochranných mechanismů nedo-
statečné nebo zcela nefunkční. Dochází proto k silnému 
poškození neuronů zánětlivým procesem vyvolaným 
depozity amyloidu v jejich okolí [1, 71]. 

SYSTÉM KOMPLEMENTU A JEHO VZTAH K ACH
Komplementový systém je nedílnou součástí imunitního 
systému a je tvořen celou řadou proteinů a proteáz. Po 
aktivaci komplementu dochází ke kaskádovitým reakcím 
vedoucím k  vytvoření devítisložkového efektorového 
komplexu, tzv. membránového lytického komplexu. Jsou 
známy dvě různé cesty aktivace komplementu, a to cesta 
klasická a alternativní. Přímý vztah k rozvoji a progresi 
ACH má klasická i alternativní cesta aktivace komple-
mentu. Bylo prokázáno, že jak Aβ, tak i  tau protein 
mohou aktivovat klasickou cestu, alternativní aktivace 
komplementové kaskády je zprostředkována fibrilární 
formou Aβ [1, 34, 54, 61]. Kromě Aβ a tau proteinu mo-
hou působit jako aktivátory klasické cesty komplementu 
i  C-reaktivní protein, sérový amyloid P a  Hagemanův 
faktor, které se nacházejí v okolí senilních plaků [39]. 
V průběhu klasické cesty aktivace komplementu dochází 
k  vazbě C1q fragmentu na aktivující molekulu a  poté 
k proteolytickému štěpení C2 a C4 fragmentu. Vzniklý 
C2aC4b komplex působí jako C3-konvertáza a po rozště-
pení C3 fragmentů vzniká C5-konvertáza. Rozštěpené 
fragmenty C5b vytvoří komplex se složkami C6, C7, C8 
a  několika C9 za vzniku membránového komplexu, 
který zprostředkuje lytický rozpad dané buňky. Jelikož 
nežádoucí či nadměrná aktivace komplementu může 
vést k rozsáhlému poškození buněk, je komplementová 
kaskáda kontrolována plazmatickými a membránovými 
inhibitory. Klasická cesta aktivace je kontrolována již 
na počátku C1-inhibitorem, který blokuje aktivaci frag-
mentu C1. Molekula CD55 neboli DAF protein inaktivuje 
C3-konvertázu a  protein CD59 blokuje závěrečnou fázi 
tvorby lytického komplexu. 
V souvislosti s ACH byla zjištěna zvýšená aktivace kom-
plementu a také nadprodukce mRNA pro jeho jednotlivé 
složky [9, 39]. Dále bylo prokázáno, že inhibitory komple-
mentové kaskády jako C1-inhibitor nebo CD59 efektivně 
neblokují nadměrnou aktivaci komplementu u pacientů 
s ACH [76] a navíc mohou být hladiny CD59 i významně 
snížené [47]. Membránový lytický komplex pak není 
efektivně blokován a dochází k nevratnému poškození 
i plně funkčních neuronů.  
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Na druhou stranu nelze opomenout studie, které pro-
kázaly, že komplement může mít i  neuroprotektivní 
účinek [7]. Inhibice komplementu u ACH myších modelů 
vedla k vyšší míře tvorby amyloidních plaků a rychlejší 
neurodegeneraci [37].  

DYNAMIKA ZÁNĚTLIVÝCH PROCESŮ  
V ROZVOJI ACH
V preklinické a prodromální fázi ACH dochází nejprve 
k aktivaci mikroglií jako reakci na ukládání amyloidu 
a obzvláště v mozkové kůře se začínají tvořit komplexy 
mikroglie-amyloid. Aktivované mikroglie produkují 
reaktivní sloučeniny a  radikály, které mají usnadnit 
odstranění amyloidu. Aktivace mikroglií předchází 
neuronálnímu poškození i patologickým procesům vy-
volaným hyperfosforylací tau proteinu [67,44]. Kromě 
mikroglií se v těsném okolí amyloidu začínají objevovat 
i  aktivované astrocyty. Mikroglie i  astrocyty postupně 
produkují kromě reaktivních sloučenin i  prozánětlivé 
a  protizánětlivé cytokiny, a  udržují tak zánětlivou re-
akci ve fyziologické rovnováze. V prodromálním stadiu 
rozvoje ACH dochází kromě benefitního zánětlivého 
procesu, který má napomoci odstranění kumulujícího se 
amyloidu, i k reparativním procesům. Tyto reparativní 
procesy mají eliminovat případné trvalé poškození moz-
kové tkáně volnými radikály a mají zajistit plnou obnovu 
její funkčnosti. Bylo prokázáno, že dochází ke zvýšené 
expresi genů kódujících buněčnou proliferaci a diferen-
ciaci, dále pak genů pro adhezivní molekuly a enzymů 
účastnících se syntézy prostaglandinů [6]. 
V průběhu progrese demence ACH typu se již uplatňuje 
zejména zánětlivý proces a postupně dochází k aktivaci 
všech typů mozkových buněk. Mozek se snaží lokální 
zánětlivou reakcí o  izolaci a  odstranění patologických 
depozit amyloidu. Reparační mechanismy, stejně jako 
produkce protizánětlivých cytokinů, jsou utlumeny. 
Jednotlivé buňky produkují především prozánětlivé me-
diátory, cytokiny a také složky komplementu. Buňky CNS 
mají schopnost produkovat jednotlivé složky komple-
mentu, ale pouze neurony mají v omezené míře schop-
nost produkovat jeho inhibitory. Produkce inhibitorů 
se již však nezvyšuje, nebo je dokonce snížena, a není 
tak možné zabránit masivní destrukci nervových buněk 
[47, 71, 76]. 
Kromě vzájemné potenciace aktivovaných mozkových 
buněk a  lytické aktivity komplementu se při rozvoji 
demence při ACH v  patofyziologii uplatňuje zánětem 
poškozená mozková tkáň v okolí amyloidu. V důsledku 
zánětu a poškození radikály totiž dochází ke změně an-
tigenicity nervové tkáně, k zahájení imunitní odpovědi 
a silnému prohloubení a rozšíření zánětlivého procesu. 
Tato silná imunitní odpověď může mít za následek další 
funkční poškození mozku. Navíc aktivace velkého počtu 
mikroglií a astrocytů může vést k porušení celkové an-
tioxidační rovnováhy a k přímému poškození mozkové 
tkáně vzdálené od ohniska zánětu volnými radikály 
a reaktivními sloučeninami [23, 40]. 

MODULACE IMUNITNÍ ODPOVĚDI 
JAKO TERAPEUTICKÝ CÍL 
Vzhledem k těsnému spojení aktivace imunitní odpovědi 
a patogeneze ACH se stal imunitní systém mozkové tkáně 

a  jeho modulace lákavým a  nadějným terapeutickým 
cílem. Existuje celá řada nesteroidních protizánětlivých 
preparátů, jako například prednison, hydroxychlorochi-
non, simvastatin, atorvastatin, rosiglitason či aspirin. 
Bohužel u žádné z těchto látek nebyl prokázán terapeu-
tický účinek a významné zlepšení kognitivních funkcí 
u pacientů v prodromální fázi ACH [40]. V rámci nedávné 
klinické studie byly testovány preparáty celecoxib a na-
proxen. Ačkoliv musela být studie předčasně ukončena 
kvůli zvýšenému riziku kardiovaskulárních komplikací 
u některých skupin léčených celecoxibem, u naproxenu 
byl pozorován mírný protektivní účinek u asymptoma-
tických pacientů v prodromální fázi ACH [10]. 
Byla provedena i  studie na testování účinnosti intra-
venózně podávaného imunoglobulinu IVIg pacientům 
v  prodromální fázi ACH. Předpokladem pro úspěšnost 
této léčby bylo, že směs IVIg obsahuje protilátky proti 
Aβ, které by mohly snižovat míru tvorby amyloidních 
plaků [15] a navíc vykazuje silný protizánětlivý účinek 
[4]. I přes nadějné výsledky v preklinickém testování na 
myších modelech ACH [36, 62] se bohužel ani tato mož-
nost neukázala jako efektivní v  léčbě pacientů s ACH. 
Předpokládá se, že neúspěšnost podávání IVIg pro zlep-
šení kognice u  pacientů v  prodromální fázi ACH byla 
způsobena pozdním zahájením terapie [68]. 

ZÁVĚR 
Výsledky dosavadních výzkumů ukazují na významnou 
roli zánětu v patofyziologii ACH ve všech stadiích one-
mocnění. Stávající informace zatím nedovolují jedno-
značně určit, zda je zánět prvotním impulzem k ukládání 
Aβ a hyperfosforylovaného tau proteinu, či zda je spíše 
důsledkem negativně pozměněného metabolismu. 
Z dosavadních údajů se zdá, že všechny dosud popsané 
systémy účastnící se vzniku a rozvoje ACH se vzájemně 
komplexně ovlivňují a  doplňují a  že imunitní reakce 
v CNS může v určitých situacích působit neuroprotek-
tivně a v jiných situacích výrazně patologicky. Ačkoliv 
doposud navrhované strategie léčebných prostředků 
u ACH zasahujících do imunitního systému selhaly, nebo 
jsou výsledky provedených studií nejednoznačné, velkou 
měrou přispěly k  hlubšímu pochopení patologických 
procesů při vzniku a  rozvoji ACH. Stejně tak vymezily 
nepopiratelnou úlohu zánětlivého procesu a pozměně-
né imunitní odpovědi v mozkové tkáni při zhoršování 
kognitivního výkonu, a proto i budoucí testovaná léčiva 
budou pravděpodobně obsahovat protizánětlivé složky. 
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