#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Caspase 1, Superoxiddismutase (D-mutase) and Calretinin Expression in the Placenta and in the Basal Decidua in Preeclampsia


Authors: I. Jurkovič 1;  A. Böör 1;  P. Kočan 1;  B. Murín 2
Authors‘ workplace: Ústav patológie a 2Klinika gynekológie a porodníctva Lekárskej fakulty Univerzity Pavla Jozefa Šafárika, Košice 1
Published in: Čes.-slov. Patol., 46, 2010, No. 1, p. 8-13
Category: Original Article

Overview

Objective:
To determine new data related to the expression of caspase 1, superoxiddismutase and calretinin in the placenta and basal decidua in preeclampsia.

Material and methods:
Placental and basal decidua samples from 9 preeclamptic and 9 normotensive controls were analyzed using expressions of caspase 1, superoxiddismutase and calretinin assesed by immunohistochemistry.

Results:
Caspase 1 was expressed in placental syncythium in preeclampsia constantly, while in the control group the expression was weak or absent. In Langhans cells, in fetal sinusoidal capillary endothelia and in Hofbauer cells the expression was equal in both groups. Stronger expression was observed in stromal myofibroblasts in preeclampsia. In preeclampsia, expression of superoxiddismutase in syncythium, in Langhans cells and in decidual cells was weaker. Calretinin was not found in any placental structure. Sporadically, calretinin was expressed in the interstitial extravillous trophoblast cells, in decidual cells and in spiral arterioles in preeclampsia.

Conclusion:
The obtained morphological data correlating with some clinical and biochemical features contribute to understanding of the molecular background of preeclampsia etiopathogenesis.

Key words:
preeclampsia – placenta – basal decidua – caspase 1 – superoxiddismutase – calretinin


Sources

1. Ajayi F., Kongoasa N., Gaffey T. et al.: Elevated expression of serine protease HtrA1 in preeclampsia and its role in trophoblast cell migration and invasion. Amer J Obstet Gynec 199, 2008, 557, e1–558, e10.

2. Allaire AD., Ballenger KA., Wells SR. et al.: Placental apoptosis in preeclampsia. Obstet Gynec. 96, 2000, s. 271–276.

3. Anastasakis E., Papantoniou N., Daskalakis G. et al.: Screening for preeclampsia by oxidative stress markers and uteroplacental blood flow. J Obstet Gynaecol 28, 2008, s. 285–289.

4. Ashley SV., Whitley SJ., Dash PR. et al.: Uterine spiral artery remodeling involves endothelial apoptosis induced by extravillous trophoblasts through Fas/FasL inteactions. Arterioscler Thromb Vasc Biol 25, 2005, s. 102–108.

5. Benirschke K., Kaufmann P.: Pathology of the Human Placenta, 3rd ed., Springer, New York 1996, s. 871.

6. Crocker I.: Gabor Than Award Lecture 2006: Pre-eclampsia and villous trophoblast turnover: Perspectives and possibilities. Placenta, Suppl. A, Trophoblast Research 21, 2007, s. 4–13.

7. DeFalco M., Penta R., Laforgia V. et al.: Apoptosis and human placenta: expression of proteins belonging to different apoptotic pathways during pregnancy. J Exp Clin Cancer Res 24, 2005, s. 25–33.

8. Dekker GA., Sibai BM.: Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol 179, 1998, s. 1359–1375.

9. Dunk C., Petkovic L., Baczyk D. et al.: A novel in vitro model of trophoblast-mediated decidual blood vessel remodeling. Lab Invest 83, 2003, s. 1821–1828.

10. Easterbrook G., Hu Y., Dadelszen P.: The role of decidual natural killer cells in normal implantation and in the pathogenesis of preeclampsia. J Obstet Gynnaecol Can 30, 2008, s. 467–476.

11. Fox H.: Pathology of the Placenta, I. ed. Saunders, London 1978, s. 291.

12. Getsios S., Chen GT., Huang DT., et al.: Regulated expression of cadherin-11 in human extravillous cytotrophoblast undergoing aggregation and fusion in response to transforming growth factor-beta2. J Reprod Fertil 114, 1998, s. 357–363.

13. Goldenberg RL., Faye-Petersen O., Andrews WW., et al.: The Alabama preterm birth study: diffuse decidual leucocytoclastic necrosis of the decidua basalis, a placental lesion associated with preeclampsia, indicated preterm birth and decreased fetal growth. J Matern-Fetal Neonat Med 20, 2007, s. 391–395.

14. Goldman-Wohl D., Yagel S.: Regulation of trophoblast invasion: from normal implantation to preeclampsia. Mol Cell Endocrinol 187, 202 s. 233–238.

15. Gotsch F., Romero R., Chaiworapongsa TP. et al.: Evidence of the involvement of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J Matern Fetal Neonatal Med 21, 2008, s. 605–616.

16. Heazell AE., Lacey HA., Jones CJ.: Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta 29, 2008, s. 75–86.

17. Hubel CA.: Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Med Biol. 222, 1999, s. 222–235.

18. Huppertz B., Kingdom J., Camiqqia I., et al.: Hypoxia favours necrotic versus apoptotic shedding of placental syncyciotrophoblast into the maternal circulation. Placenta, 24, 2003, s. 181–190.

19. Huppertz B.: Placental villous trophoblast: the altered ballance between proliferation and apoptosis triggers pre-eclampsia. J Reprod Med Endocrinol 3, 2006, s.103–108.

20. Huppertz B., Kadyrov M., Kingdom JCV.: Apoptosis and its role in the preeclampsia. Am J Obstet Gynec 195, 2006, s. 29–39.

21. Kraus FT., Redline RW., Gersel DJ., et al.: Placental Pathology, AFIP, Washington, 2004, s. 321.

22. Levin RJ., Maynard SE., Qian C., et al.: Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350, 2004, s. 672–683.

23. Levy E.: The role of apoptosis in preeclampsia. IMAJ 7, 2005, s. 178–181.

24. Lyall F.: Mechanisms regulating cytotrophoblast invasion in normal pregnancy and preeclampsia. Austr N Zealand Obstet Gynaec 46, 2006, s. 266–273.

25. Matthiesen L., Berg G., Ernerudh J., et al.: Immunology of preeclampsia. Chem Immunol Allergy 89, 2005, s. 49–61.

26. McCalman CD., Getsios S., et al.: Type 2 cadherins in the human endometrium and placenta: their putative roles in human implantation and placentation. Am J Reprod Immunol 39, 1998, s. 96–107.

27. Medrano Rodríguez JC., Yahuaca Mendoza P., Presno Bernal M., et al.: Oxidative stress level and placental histological changes during preeclampsia. Ginecol Obstet Mex 76, 2008, s. 319–326.

28. Morris LH., Sooranna SL., Learmont JG., et al.: Nitric oxid synthase activities in placental tissue from normotensive, preeclamptic and growth retarded pregnancies. Br J Obstet Gynaecol 102, 1995, s. 711–714.

29. Murín B., Lukačín Š.: Etiopatogenéza, rizikové faktory a klasifikácia preeklampsie. Gynekol prax 4, 2006, s. 8–12.

30. Murín B.: Úloha oxidačného stresu v etiopatogenéze preeklampsie. Slov Gynek Pôrod 15, 2008, s. 65–70.

31. Nagata S., Aishima S., Fukuzawa K. et al.: Adenomatoid tumour of the liver. J clin Pathol 61, 2008, s. 777–780.

32. Naicker T., Khedun SM., Moodley J., Pijnenborg R.: Quantitative analysis of trophoblast invasion in preeclampsia. Acta Obstet Gynec Scand 82, 2003, s. 722–729.

33. Ogura Y., Sutterwala FS., Flavell RA.: The inflammasome: first line of immune response to cell stress. Cell 126, 2006, s. 656–662.

34. Ranheim T., Staff AC., Henriksen T.: VEGF mRNA is unaltered in decidual and placental tissues in preeclampsia at delivery. Acta Obstet Gynec Scand 80, 2001, s. 93–98.

35. Salamonsen LA.: Role of proteases in implantation. Rev Reprod 4, 1999, s. 11–22.

36. Saleh M., Green DR.: Caspase-1 inflammasomes: choosing between death and taxis. Cell Death and Differentiation 14, 2007, s. 1559–1560.

37. Sedeek M., Gilbert JS., LaMarca BB. et al.: Role of reactive oxygen species in hypertension produced by reduced uterine perfusion in pregnant rats. Am J Hypertens 21, 2008, s. 1152–1156.

38. Selvaggi L., Ribatti D., Loverro G. et al.: Angiogenesis in pre-eclampsia. Eur J Obstet Gynec 59, 1995, s. 83–89.

39. Serdar Z., Gür E., Develiogýlu O. et al.: Placental and decidual lipid peroxidation and antioxidant defenses in preeclampsia. Lipid peroxidation in preeclampsia. Pathophysiology 9, 2002, s. 21–25.

40. Shah DM., Banu JM., Chirgwin JM., et al.: Reproductive tissue renin gene expression in preeclampsia. Hypert Pregn 19, 2000, s. 341–351.

41. Solomon CG., Seely EW.: Preeclampsia – searching for the cause. N Engl J Med 350, 2004, s. 641–642.

42. Stanek J.: Increased number of migratory trophoblastic cells in placental membranes with microscopic chorionic pseudocysts. Society for Pediatric Pathology. Spring Meeting, Denver Colorado, March 1–2, 2008.

43. Staff AC., Ranheim T., Khoury J., et al.: Increased contents of phospholipids, cholesterol, and lipid peroxides in decidua basalis in women with preeclampsia. Am J Obstet Gynec 180, 1999, s. 587–592.

44. Staff AC., Halvorsen B., Ranheim T., et al.: Elevated level of free 8-iso-prostanglandin F2α in the decidua basalis of women with preeclampsia. Am J Obstet Gynec 181, 1999, s. 1211–1215.

45. Wang Y., Walsh SW.: Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta 22, 2001, s. 206–212.

46. Watson RW., Rotstein OD., Parodo J., et al.: The IL-1 beta-converting enzyme (caspase-1) inhibits apoptosis of inflammatory neutrophils through activation of IL-1 beta. J Immunol 161, 1998, s. 957–962.

47. Yu HB., Finlay BB.: The caspase-1 inflammasome: a pilot study of innate immune response. Cell Host Microbe 4, 2008, s. 198–208.

Labels
Anatomical pathology Forensic medical examiner Toxicology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#