DNA quality of spermatozoa is negatively affected by male age and represents a risk factor for conception

Authors: Z. Krátká
Authors‘ workplace: Imunologická laboratoř GENNET s. r. o., Praha
Published in: Čes. Gynek.2017, 82, č. 6 s. 491-495


Review the effect of ageing on decreasing quality of sperm and increasing risks of reproductive outcome.


Laboratory of Immunology, GENNET s.r.o, Prague.

Study group – men from sub-fertile couples.

Male age is associated with a decrease of semen volume and deterioration of total sperm count, motility and morphology. Number of de novo gene mutations, defects in DNA epigenetic modifications and number of apoptotic sperm with fragmented DNA increase in ageing men. Male age and life-style have an impact on quality of sperm. The risk factors are smoking, overweight, unhealthy food, lack of physical activity, increased body temperature and illnesses e.g. varicocele, urinary tract infections, cancer diseases and hormonal imbalances.

Men fertility is not age-unlimited. The probability of conception significantly decreases in older men and the time to conception is significantly prolonged. Urological and andrological examination should be compulsory for older men from subfertile couples. The standard examinations – semen analyses, endocrine examination, ultrasound imaging etc. plus modern methods – such as the examination of sperm DNA fragmentation and the percentage of apoptotic sperm - are recommended. Although the treatment options of male subfertility are limited, the targeted treatment and improvement of patient´s life style can positively influence the sperm quality.

spermatozoa, DNA fragmentation, apoptosis, epigenetic process, fertility, ageing


1. Aitken, RJ., Baker, MA. Causes and consequences of apoptosis in spermatozoa; contribution to infertility and impacts on development. Int J Dev Biol, 2013, 57, p. 265–272.

2. Aziz, N., Said, T., Paasch, U., Agarwal, A. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Repr, 2007, 22, 5, p. 1413–1419.

3. Barlow, DP., Bartolomei, MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol, 2014, 6, 2, p. 1–21 pii: a018382. doi: 10.1101/cshperspect.a018382.

4. Bittner, L., Chocholatý, M., Čechová, M., et al. Vliv volných radikálů na fertilitu muže a možnosti léčby. Ces Urol, 2015, 19, 1, s. 11–18.

5. Conti, SL., Eisenberg, ML. Paternal aging and increased risk of congenital disease, psychiatric disorders and cancer. Asian J Andr, 2016, 18, p. 420–424.

6. Český statistický úřad, Odbor statistiky obyvatelstva. Demografická ročenka České republiky 2015, 2016 https://www.czso.cz/csu/czso/demograficka-rocenka-ceske-republiky

7. D´Onofrio, BM., Rickert, ME., Frans, E., et.al. Paternal age at child bearing and offspring psychiatric and academic morbidity. JAMA Psychiatry, 2014, 71, 4, p. 432–438.

8. Elhamamsy, AR. Role of DNA methylation in imprinting disorders: an update review. J Assist Rep Gennet, 2017, 34, 5, p. 549–562.

9. European Union – Eurostat Table tps00017 – Mean age of woman at childbirth – Years – http://ec.europa.eu/eurostat/tgm/table.do?tab=table&plugin=1&language=en&pcode=tps00017

10. Evanson, DP. The sperm chromatin structure assay (SCSA) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci, 2016, 169, p. 56–75.

11. Gil, M., Sar-Shalom, V., Sivira, YM., et al. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analyses. J Assist Repro Genet, 2013, 30, p. 479–485.

12. Hassan, MA., Killick, SR. Effect of male age on fertility: evidence for the decline in male fertility with increasing age. Fertil Steril, 2003, Suppl 3, p. 1520–1527.

13. International Congress of Andrology (ICA 2017), 6–9 May 2017 Copenhagen, Denmark. http://www.andrology.dk/ICA2017_Abstract_Book.pdf.

14. Johnson, SL., Dunleavy, J., Gemmell, NJ., Nakagawa, S. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev, 2015, 19, p. 22–33.

15. Kloudová, S., Rybář, R., Přinosilová, P., et al. Srovnání výsledků detekce integrity DNA spermií stanovených pomocí testu Halosperm a metody SCSA. Sborník abstrakt z 9. česko-slovenské konference reprodukční gynekologie. Jubilejní 20. sympozium asistované reprodukce, Brno, Česká republika, 2010, s. 182.

16. Kobayashi, N., Miyauchi, N., Tatsuta, N., et al. Factors associated with abberant imprint methylation and oligozoospermia. Sci Rep, 2017, 7, 42336, doi: 10.1038/ srep42336

17. Kong, A., Frigge, ML., Masson, G., et al. Rate of de novo mutations, father´s age and disease risk. Nature, 2012, 23, 488 (7412), p. 471 – 475, doi:10.1038/nature11396.

18. Kovac, JR., Addai, J., Smith, RP., et al. The effect of advanced paternal age on fertility. Asian J Andr, 2013, 15, p. 723–728.

19. Krátká, Z., Vik, V., Luxová, Š. Není normozoospermik jako normozoospermik aneb význam vyšetření kvality spermií pomocí průtokové imunologie. Alergie – sborník XXXIII. sjezdu českých a slovenských alergologů a klinických imunologů, Plzeň, Česká republika, 2016, 18, s. 87.

20. Martin, JA., Hamilton, BE., Osterman, MJK. Births: Final data for 2015, Nat Vital Stat Rep, 2017, 66, 1, p. 1–66.

21. Rajender, S., Avery, K., Agarwal, A. Epigenetics, spermatogenesis and male fertility, Mut Res, 2011, 727, p. 62–71 doi: 10.1016/j.mrrev.2011.04.002

22. Sadler, TW. Langmanova lékařská embryologie. Praha: Grada Publishing, 2011.

23. Sakkas, D., Ramalingam, M., Garrido, N., Barratt, CLR. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Rep Update, 2015, 21, 6, p. 711–726, doi: 10.1093/humupd/dmv042.

24. Schulte, RT., Ohl, DA., Singman, M., Smith, GD. Sperm DNA damage in male infertility: etiologies, assays and outcomes, J Assist Reprod Genet, 2010, 27, p. 3–12.

25. Sharma, RK., Sabanegh, E., Mahfouz, R. TUNEL as a test for sperm DNA damage testing in the evalution of male fertility. Urology, 2010, 76, 6, p. 1380–1386.

26. Vecoli, C., Montano, L., Andreassi, MG. Environmental pollutans: genetic damage and epigenetic changes in male germ cells. Environ Sci Pollut Res, 2016, 23, 23339–23348.

27. Ústav zdravotnických informací a statistiky ČR. Vrozené vady u narozených v roce 2012, Zdravotnická statistika, Praha, 2015.

28. Wilkin, DJ., Szabo, JK., Cameron, R., et al. Mutations in fibroblast growth factor receptor 3 in sporadic cases of achondroplasia occure exclusively on the paternally derived chromosome. Am J Hum Genet, 1998, 63, 711–716.

Paediatric gynaecology Gynaecology and obstetrics Reproduction medicine

Article was published in

Czech Gynaecology

Issue 6

2017 Issue 6

Most read in this issue

This topic is also in:

Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account