Metal complexes in medicine and pharmacy – the past and the present I

Authors: Ladislav Habala;  Jindra Valentová
Published in: Čes. slov. Farm., 2018; 67, 182-191
Category: Review Article


Metals and their compounds have been exploited in medicine since the dawn of history. All metals (or their substances) exert some kind of biological activity. Metal complexes exhibit a number of unique properties as compared to purely organic substances, stemming from the presence of the metal atom and the variable arrangement of ligands around this central atom. The goal of this brief survey is to provide basic overview of the area of metallopharmacy, aimed at specialists in pharmacy and chemistry as well as at the general educated public. The first part concentrates on some historical aspects of metallopharmacy and on current application of metals in the therapy of infectious diseases and in diagnostics.


bioinorganic chemistry – metallopharmaceuticals – metal complexes – diagnostics – chemotherapy


1. Kaim W., Schwederski B., Klein A. Bioinorganic chemistry: inorganic elements in the chemistry of life. Chichester: John Wiley & Sons Ltd 2013.

2. Crichton R. R. Biological inorganic chemistry. A new introduction to molecular structure and function. Amsterdam: Elsevier 2012.

3. Bertini I., Gray H. B., Stiefel E. I., Valentine J. S. Biological inorganic chemistry: structure and reactivity. Sausalito: University Science Books 2007.

4. Taylor D. M., Williams D. R. Trace element medicine and chelation therapy. Cambridge: The Royal Society of Chemistry 1995.

5. Frieden E. (ed.) Biochemistry of the essential ultratrace elements. New York: Plenum Press 1984.

6. Jones C., Thornback J. Medicinal applications of coordination chemistry. Cambridge: The Royal Society of Chemistry 2007.

7. Gielen M., Tiekink E. R. T. Metallotherapeutic drugs and metal-based diagnostic agents – the use of metals in medicine. Chichester: John Wiley & Sons Ltd 2005.

8. Mjos K. D., Orvig C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 2014; 114, 4540–4563.

9. Sneader W. Drug discovery. A history. Chichester: John Wiley & Sons 2005.

10. Beutler E. History of iron in medicine. Blood Cells Mol. Dis. 2002; 29, 297–308.

11. Higby G. J. Gold in medicine. A review of its use in the West before 1900. Gold Bull. 1982; 15, 130–140.

12. Benedek T. G. The history of gold therapy for tuberculosis. J. Hist. Med. Allied Sci. 2004; 59, 50–89.

13. Lemire J. A., Harrison J. J., Turner R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013; 11, 371–384.

14. Riegel-Futyra A., Dąbrowski J. M., Mazuryk O., Śpiewak K., Kyzioł A., Pucelik B., Brindell M., Stochel G. Bioinorganic antimicrobial strategies in the resistance era. Coord. Chem. Rev. 2017; 351, 76–117.

15. Farrar W. V., Williams A. R. A history of mercury. In: McAuliffe C. A. (ed.) The chemistry of mercury. London: The Macmillan Press 1977.

16. Lykknes A., Kvittingen L. Arsenic: not so evil after all? J. Chem. Ed. 2003; 80, 497–500.

17. Riethmiller S. From atoxyl to salvarsan: searching for the magic bullet. Chemotherapy 2005; 51, 234–242.

18 . Williams K. J. The introduction of ‘chemotherapy’ using arsphenamine – the first magic bullet. J. Royal Soc. Med. 2009; 102, 343–348.

19. Levinson A. S. The structure of salvarsan and the arsenic-arsenic double bond. J. Chem. Ed. 1977; 54, 98–99.

20. Lloyd N. C., Morgan H. W., Nicholson B. K., Ronimus R. S. The composition of Ehrlich’s salvarsan: resolution of a century-old debate. Angew. Chem. Int. Ed. 2005; 44, 941–944.

21. Rao Y., Li R. H., Zhang D. Q. A drug from poison: how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered. Sci. China Life Sci. 2013; 56, 495–502.

22. Alexander J. W. History of the medical use of silver. Surg. Infect. 2009; 10, 289–292.

23. Nowack B., Krug H. F., Height M. 120 years of nanosilver history: implications for policy makers. Environ. Sci. Technol. 2011; 45, 1177–1183.

24 . Vosmanská V., Kolářová K., Švorčík V. Porovnání antibakteriální aktivity krytů ran dotovaných stříbrem. Chem. Listy 2017; 111, 804–808.

25. Stathopoulou M. K., Banti C. N., Kourkoumelis N., Hatzidimitriou A. G., Kalampounias A. G., Hadjikakou S. K. Silver complex of salicylic acid and its hydrogel-cream in wound healing chemotherapy. J. Inorg. Biochem. 2018; 181, 41–55.

26. Klasen H. J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000; 26, 131–138.

27. Chernousova S., Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013; 52, 1636–1653.

28. Möhler J. S., Sim W., Blaskovich M. A. T., Cooper M. A., Ziora Z. M. Silver bullets: a new lustre on an old antimicrobial agent. Biotechnol. Adv. 2018; 36, 1391–1411.

29. Hendre A. D., Taylor G. W., Chávez E. M., Hyde S. A systematic review of silver diamine fluoride: effectiveness and application in older adults. Gerodontology 2017; 34, 411–419.

30. Hordyjewska A., Popiołek Ł., Kocot J. The many ‘faces’ of copper in medicine and treatment. Biometals 2014; 27, 611–621.

31. Vincent M., Hartemann P., Engels-Deutsch M. Antimicrobial applications of copper. Int. J. Hyg. Environ. Health 2016; 219, 585–591.

32 . O’Gorman J., Humphreys H. Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect. 2012; 81, 217–223.

33. Borkow G., Gabbay J. Copper as a biocidal tool. Curr. Med. Chem. 2005; 12, 2163–2175.

34. Li H., Sun H. Recent advances in bioinorganic chemistry of bismuth. Curr. Opin. Chem. Biol. 2012; 16, 74–83.

35. Yang N., Sun H. Biocoordination chemistry of bismuth: Recent advances. Coord. Chem. Rev. 2007; 251, 2354–2366.

36. Keogan D. M., Griffith D. M. Current and potential applications of bismuth-based drugs. Molecules 2014; 19, 15258–15297.

37. Habala L., Devínsky F., Egger A. Metal complexes as urease inhibitors. J. Coord. Chem. 2018; 71, 907–940.

38. Frézard F., Demicheli C., Ribeiro R. R. Pentavalent antimonials: New perspectives for old drugs. Molecules 2009; 14, 2317–2336.

39. Tamás M. J. Cellular and molecular mechanisms of antimony transport, toxicity and resistance. Environ. Chem. 2016; 13, 955–962.

40. Li F., Collins J. G., Keene F. R. Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev. 2015; 44, 2529–2542.

41. Navarro M., Gabbiani C., Messori L., Gambino D. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: recent achievements and perspectives. Drug Discov. Today 2010; 15, 1070–1078.

42. Zhang L., Carroll P., Meggers E. Ruthenium complexes as protein kinase inhibitors. Org. Lett. 2004; 6, 521–523.

43. Mishra A. K., Mishra L. (eds.) Ruthenium chemistry. Singapore: Pan Stanford Publishing Pte. Ltd. 2018.

44. Amolegbe S. A., Akinremi C. A., Adewuyi S., Lawal A., Bamigboye M. O., Obaleye J. A. Some nontoxic metal‑based drugs for selected prevalent tropical pathogenic diseases. J. Biol. Inorg. Chem. 2017; 22, 1–18.

45. Kotek J., Lukeš I. Cheláty pro využití v biomedicínských oborech. Chem. Listy 2010; 104, 1163–1174.

46. Caschera L., Lazzara A., Piergallini L., Ricci D., Tuscano B., Vanzulli A. Contrast agents in diagnostic imaging: present and future. Pharmacol. Res. 2016; 110, 65–75.

47. Vallabhajosula S. Molecular imaging. Radiopharmaceuticals for PET and SPECT. Berlin – Heidelberg: Springer-Verlag 2009.

48. Saha G. B. Fundamentals of nuclear pharmacy. New York: Springer Science 2010.

49. Zanzonico P. Principles of nuclear medicine imaging: Planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat. Res. 2012; 177, 349–364.

50. Khalil M. M., Tremoleda J. L., Bayomy T. B., Gsell W. Molecular SPECT imaging: An overview. Int. J. Mol. Imaging 2011; Article ID 796025.

51. Kohlíčková M., Jedináková-Křížová V., Melichar F. Komplexní sloučeniny technecia – jejich využití v přípravě radiofarmak a některé farmakokinetické vlastnosti. Chem. Listy 1998; 92, 643–655.

52. Schwochau K. Technetium: chemistry and radiopharmaceutical applications. Weinheim: Wiley-VCH Verlag GmbH 2000.

53. Saha G. B. Basics of PET imaging. Physics, chemistry, and regulations. New York: Springer Science 2010.

54. Vāvere A. L., Lewis J. S. Cu-ATSM: A radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007; 43, 4893–4902.

55. Westbrook C. MRI at a glance. Chichester: John Wiley & Sons Ltd 2016.

56. Laurent S., Henoumont C., Stanicki D., Boutry S., Lipani E., Belaid S., Muller R. N., Elst L. V. MRI contrast agents. From molecules to particles. Singapore: Springer Nature 2017.

57. Kim H.-K., Lee G. H., Chang Y. Gadolinium as an MRI contrast agent. Future Med. Chem. 2018; 10, 639–661.

58. Zhang Z., Shrikumar A. N., McMurry T. J. Gadolinium meets medicinal chemistry: MRI contrast agent development. Curr. Med. Chem. 2005; 12, 751–778.

59. Giovenzana G. B., Lattuada L., Negri R. Recent advances in bifunctional paramagnetic chelates for MRI. Isr. J. Chem. 2017; 57, 825–832.

60. Bonnet C. S., Tóth É. Smart contrast agents for magnetic resonance imaging. Chimia 2016; 70, 102–108.

61. Lux J., Sherry A. D. Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo. Curr. Opin. Chem. Biol. 2018; 45, 121–130.

62. Sherry A. D., Wu Y. The importance of water exchange rates in the design of responsive agents for MRI. Curr. Opin. Chem. Biol. 2013; 17, 167–174.

63. Pullicino R., Das K. Is it safe to use gadolinium-based contrast agents in MRI? J. R. Coll. Physicians Edinb. 2017; 47, 243–246.

64. Kelkar S. S., Reineke T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011; 22, 1879–1903.

Pharmacy Clinical pharmacology
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account