#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Use of Modern Examination Methods in Early Diagnosis of Pigmentary Glaucoma and Pigmentary Dispersion Syndrome


Authors: J. Lešták;  E. Nutterová;  Š. Pitrová
Authors‘ workplace: Oční klinika JL, V Hůrkách 1296/10, Praha, primář MUDr. Ján Lešták, CSc., MBA
Published in: Čes. a slov. Oftal., 66, 2010, No. 2, p. 55-60
Category: Original Article

Overview

Aim:
To establish, using modern examination methods, the possibility to determine the damage of visual functions characteristic for glaucoma in pigmentary dispersion syndrome (PDS) earlier than using classical methods, and, if the pigmentary glaucoma (PG) differs in the visual functions damage from the primary open angle glaucoma (POAG).

Materials and methods:
The followed-up cohort of 21 persons (altogether examined 34 eyes) was divided into four groups: in the first group, there were the healthy controls and the next three groups were divided according to the type of the disease. The first group consisted of 10 eyes of 5 healthy persons (1 woman aged 50 years and 4 men in the age 23 –45 years). The average refractive error in this group was -0.25 diopters. In the second group, 10 eyes of 7 patients with PDS (out of them 2 women at the age 55 and 56 years respectively, and 5 men, age 27–46 years) were included. The average refractive error in this group was -2.85 diopters. The third group comprised 9 eyes of 6 patients with PG (3 women aged 50–56 years and 3 men at the age 21–49 years). The average refractive error in this group was -5.0 diopters. The fourth group consisted of 5 eyes of 3 patients (one woman at the age of 44 years and two men at the age 35 and 50 years) with POAG. The average refractive error in this group was -1.0 diopter. The age structure in all groups was comparable. In the followed-up cohort of 21 persons, the refractive error, the visual acuity, (EDTRS charts), gonioscopy (evaluated according to Spaeth classification), intraocular pressure (non-contact device Canon TX 10 and applanation tonometer Inami), visual field testing (Medmont M700), nerve fiber layer measurement (GDx – VCC), macular volume (MV – OCT Stratus), PR–ERG, PR-VEP (Retiscan according to the ISCEV methodology) were examined.

Results:
The statistical evaluation of the results and their mutual comparing among separate groups with following outputs were performed:

1. The control group and the PDS group:
statistically significant differences were established in GDx and MV. Statistically most significant were the differences in PR-ERG and PR-VEP amplitudes (t = 28, eventually 18.254 against the tabularized value 2.845).

2. The control group against the PG group:
statistically significant differences were found in GDx, MV, and PR-ERG and PR-VEP amplitudes as well.

3. The control group against the POAG group:
statistically significant differences were found in GDx and MV. Statistically most important difference was found in the PR-VEP amplitude (t = 63.973 against the tabularized value 3.012).

4. The PDS group versus PG group:
statistically significant differences were found in GDx and MV as well. Statistically most important difference was found in the PR-VEP amplitude (t = 36.75 against the tabularized value 2,898).

Conclusion:
Using the modern diagnostic techniques, the PDS and PG may be differentiated. Statistically significant differences were found in GDx and in MV as well. The biggest difference was in PR-ERG and in PR-VEP. Differentiated slowing down of the excitations conduction speed in the visual evoked responses, which presents in PG and in PDS as well, may provide close proximity of both diseases. Because of that, it is appropriate to follow up the patients with the PDS in the same way as the glaucoma patients.

Key words:
pigmentary dispersion syndrome, pigmentary glaucoma, primary open angle glaucoma, early diagnosis, NFI, MV, PR-ERG, PR-VEP.


Sources

1. Airaksinen, P.J., Drance, S.M.: Neuroretinal rim area and retina nerve fiber layer in glaucoma. Arch. Ophthalmol. 1985, 103, 2, s. 203–204

2. Andersen, J.S. et al.: A gene responsible for the pigment dispersion syndrome maps to chromosome 7q35-q36. Arch. Ophthalmol. 1997, 115, 3, s. 384–388

3. Balaboa, O.E., Mudroch, I.E.: Free floating melanin particles in anterior chamber: a normal finding in African eyes. Eye. 2003, 17, 3, s. 410–4.

4. Berger, A., Ritech, R., McDermott: Pigmentary dispersion, refraction and glaucoma. Invest. Ophthal. Vis. Sci. 1987, 28 (suppl.), s. 134

5. Bick, M.W.: Sex differences in pigmetary glaucoma. Am. J. Ophthalmol. 1962, 54, 11, s. 831–837

6. Campbell, D.G.: Pigmentary dispersion and glaucoma: a new theory. Arch. Ophthalmol. 1997, 97, 9, s. 1667–1672

7. Craig, J.E., Baier, P.N., Haeley, D.L., et al.: Evidence for genetic heterogenity within eight glaucoma families, with GLCA 1 G.ln 368 STOP mutations being an important phenotypic modifier. Ophthalmology 2001, 108, 9, s. 1607–1620

8. Davidson, J.A., Brubaker, R.F., Ilstrup, D.M.: Dimensions of the anterior chamber in pigment dispersion syndrome., Arch. Ophthalmol. 1983, 101, 1, s.81–83

9. Dawson, W., Maida, R., Rubin, M.: Human pattern retina evoked response are altered by optic Atrophy. Invest. Ophthal. Vis. Sci. 1982, 22, 6, s. 796–803

10. Farrar, S.M., et al.: Risk factors for the development and severity of glaucoma in the pigment dispersion syndrome. Am. J. Ophthalmol. 1989, 108, 3, s. 223–229

11. Fortune, B., Bui, B.V., Johnson, E.C., et al.: Selective ganglion cell functional loss in rats with experimental glaucoma. Invest. Ophthal. Vis. Sci. 2004, 45, 6, s. 1854–1862

12. Gottanka, J., Johnson, D.H., Grehn, F., Lütjen-Drecoll, E.: Histologic findings in pigment dispersion syndrome and pigmentary glaucoma. J. Glaucoma, 2006, 15, 2, s. 142–-151

13. Holder, G.E., Brigell, M.G., Hawlina, M., et al: ISCEV standard for clinical pattern electroretinography—2007 update. Doc Ophthalmol. 2007, 114, 3, s.111–116

14. Kerrigan-Baumrid, L.A., Quigley, H.A., Pease, M.E., et al.: Numer of ganglion cells in glaucoma eyes compared with threshold field tests in the same person. Invest. Ophthal. Vis. Sci. 2000, 41, 3, s. 741–748

15. Lehto, I., Vesti, E.: Diagnosis and management of pigmenary glaucoma. Curr. Opin. in Ophthal. 1998, 9, 2, s. 61–64

16. Moroi, S.E., Lark, K.K., Sieving, P.A., et al.: Long anterior zonules and pigment dispersion. Am. J. Ophthalmol. 2003, 136, 6, s. 1176–8

17. Odom, J.V., Bach, M., Brigell, M., et al.: ISCEV standard for clinical visual evoked potential (2009 update Doc Ophthalmol. 2010, 120, 1, s.111–119

18. Rahimi, M.: Relationship between retinal lattice and open angle glaucoma. Med. Hypotheses. 2005, 64, 1, s. 86–7

19. Ritch, R.: A unification hypothesis of pigment dispersion syndrome. Trans. Am. Ophthalmol. Soc. 1996, 94, s. 381–409

20. Ritch, R., Steinberger, D., Liebmann, J.M.: Prevalence of pigment dispersion in a population undergoing glaucoma screening. Am. J. Ophthalmol. 1993, 115, 6, s. 707–710

21. Robert, D.K., Winter, J.E., Castells, D.D., et al.: Pigment strie of anterior lens capsule and age-associated pigment dispersion of variable degree in a group of older African-Americans: an age, race, and gender matched study. Int. Ophthalmol. 2001, 24, s. 313–22

22. Růžičková, E., Pitrová, Š., Šíp, L.: Možnosti léčby pigmentového glaukomu. Čs. Oftal. 1992, 48, 2, s. 81–85

23. Sanchez-Galeana, C., Bowd, C., Blumenthal, E.Z., et al.: Using optical imaging summary data to detect glaucoma. Ophthalmology 2001, 108, 10, s. 1812–1818

24. Schie, H.D., Cameron, J.D.: Pigment dispersion syndrome: a clinical study. Br. J. Ophthalmol. 1981, 65, 4, s. 264–269

25. Spaeth, G.L.: The normal development of the human chamber angle a new systém of descriptive fading. Trans Ophthalmol. Soc. UK, 1971, 91, s. 709–739.

26. Sugar, H.S., Barbour, F.A.: Pigmentary glaucoma: A rare clinical entity. Am. J. Ophthalmol. 1949, 32, 1, s. 90–92

27. Sugar, H.S.: Pigmentary glaucoma: a 25-year review. Am. J. Ophthalmol. 1966, 62, 3, s. 499–507

28. Weseley, P., Liebmann, J., Walsh, J.B., Ritch, R.: Lattice degeneration of the retina and the pigment dispersion syndrome. Am. J. Ophthalmol. 1992, 114, 4, s. 539–543

29. Wollstein, G., Ishikawa, H., Wang, J., et al.: Comparison of tree optical coherence tomography scanning areas for detection of glaucomatous damage. Am. J. Ophthalmol. 2005, 139, 1, s. 39–43

Labels
Ophthalmology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#