Clinical significance of the parameter CAVI (Cardio‑ Ankle Vascular Index) in prevention, dia­gnosis and therapy


Authors: P. Dobšák 1;  V. Soška 2;  T. Šrámková 3;  L. Mífková 1;  V. Mrkvicová 1;  P. Palanová 1;  J. Siegelová 1,4;  K. Shirai 5
Authors‘ workplace: Klinika tělovýchovného lékařství a rehabilitace LF MU a FN u sv. Anny v Brně 1;  Oddělení klinické bio­chemie, FN u sv. Anny v Brně 2;  Sexuologický ústav, 1. LF UK a VFN v Praze 3;  Katedra fyzioterapie a rehabilitace, LF MU, Brno5 Sakura Hospital, Medical Center, Toho University, Japonsko 4
Published in: Kardiol Rev Int Med 2014, 16(4): 272-279
Category: Cardiology Review

Overview

Loss of elasticity of the arterial wall accompanied by its stiffening has been identified as an independent prognostic factor in patients with cardiovascular dis­eases. The standard non‑invasive investigation of arterial stiffness is the measurement of pulse‑ wave velocity (PWV), but its accuracy is affected by changes in blood pressure (BP) at the time of measurement. Because an exponential relationship exists between intravascular pressure and diameter of the artery, an arterial wall stiffness parameter β can be defined using the natural logarithm of the ratio of systolic and diastolic blood pressure and the elasticity of the arterial wall. Parameter β is the basis for the calculation of CAVI (Cardio‑ Ankle Vascular Index), which is independent of changes in BP. This is a big advantage of CAVI, which has been the subject of intense clinical research in the past decade, focusing on the evaluation of arterial stiffness in patients with existing cardiovascular disease and also in patients at increased risk, such as those with hypertension, diabetes or obesity. The primary objective of the dia­gnostic use of CAVI is the assessment of arterial stiffness and early detection of atherosclerosis. CAVI can be successfully used for monitoring the possible progression of the disease and effectiveness of treatment. Nevertheless, it is recommended that the CAVI measurement is evaluated with some caution because its elevated values reflect vascular stiffness induced by pathological mechanisms in the arterial wall, as well as the increased arterial tension resulting from smooth muscle contractions.

Keywords:
Cardio‑ Ankle Vascular Index –  arterial stiffness –  cardiovascular diseases –  atherosclerosis


Sources

1. Collins R, Armitage J, Parish S et al. MRC/ BHF Heart Protection Study of cholesterol‑ lowering with simvastatin in 5963 people with diabetes: a randomised placebo‑ controlled trial. Lancet 2003; 361: 2005– 2016.

2. Nissen SE, Nicholls SJ, Sipahi I et al. Effect of very high‑intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006; 295: 1556– 1565.

3. Bots ML, Hoes AW, Koudstaal PJ et al. Common carotid intima‑ media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 1997; 96: 1432– 1437.

4. Chambless LE, Folsom AR, Clegg LX et al. Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol 2000; 151: 478– 487.

5. O'Rourke MF, Staessen JA, Vlachopoulos C et al. Clinical applications of arterial stiffness; definitions and reference values Am J Hypertens 2002; 15: 426– 444.

6. Munakata M, Sakuraba J, Tayama J et al. Higher brachial‑ ankle pulse wave velocity is associated with more advanced carotid atherosclerosis in end‑stage renal disease. Hypertens Res 2005; 28: 9– 14.

7. Tomiyama H, Koji Y, Yambe M et al. Brachial ankle pulse wave velocity is a simple and independent predictor of prognosis in patients with acute coronary syndrome. Circ J 2005; 69: 815– 822.

8. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension 2009; 54: 1328– 1336. doi: 10.1161/ HYPERTENSIONAHA.109.137653.

9. van Popele NM, Grobbee DE, Bots ML et al. Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke 2001; 32: 454– 460.

10. Yambe T, Yoshizawa M, Saijo Y et al. Brachio‑ ankle pulse wave velocity and cardio‑ ankle vascular index (CAVI). Biomed Pharmacother 2004; 58 (Suppl 1): S95– S98.

11. Shirai K, Utino J, Otsuka K et al. A novel blood pressure‑independent arterial wall stiffness parameter; cardio‑ ankle vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101– 107.

12. Izuhara M, Shioji K, Kadota S et al. Relationship of cardio‑ ankle vascular index (CAVI) to carotid and coronary arteriosclerosis. Circ J 2008; 72: 1762– 1767.

13. Miyoshi T, Doi M, Hirohata S et al. Cardio‑ ankle vascular index is independently associated with the severity of coronary atherosclerosis and left ventricular function in patients with ischemic heart disease. J Atheroscler Thromb 2010; 17: 249– 258.

14. Yambe T, Meng X, Hou X et al. Cardio‑ ankle vascular index (CAVI) for the monitoring of the atherosclerosis after heart transplantation. Biomed Pharmacother 2005; 59 (Suppl 1): S177– S179.

15. Okura T, Watanabe S, Kurata M et al. Relationship between cardio‑ ankle vascular index (CAVI) and carotid atherosclerosis in patients with essential hypertension. Hypertens Res 2007; 30: 335– 340.

16. Satoh N, Shimatsu A, Kato Y et al. Evaluation of the cardio‑ ankle vascular index, a new indicator of arterial stiffness independent of blood pressure, in obesity and metabolic syndrome. Hypertens Res 2008; 31: 1921– 1930. doi: 10.1291/ hypres.31.1921.

17. Shirai K, Utino J, Saiki A et al. Evaluation of arteriosclerotic vascular disease with a new noble stiffness indicator, cardio‑ ankle vascular index (CAVI). J Clin Exp Cardiolog 2012; S1: 004. doi:10.4172/ 2155- 9880.S1- 004. [online] Available from: http:/ / omicsonline.org/ 2155- 9880/ 2155- 9880- S1- 004.php?aid=8080.

18. Shirai K, Hiruta N, Song M et al. Cardio‑ ankle vascular index (CAVI) as a novel indicator of arterial stiffness: theory, evidence and perspectives. J Atheroscler Thromb 2011; 18: 924– 938.

19. Kubozono T, Miyata M, Ueyama K et al. Clinical significance and reproducibility of new arterial distensibility index. Circ J 2007; 71: 89– 94.

20. Takaki A, Ogawa H, Wakeyama T et al. Cardio‑ ankle vascular index is superior to brachial‑ ankle pulse wave velocity as an index of arterial stiffness. Hypertens Res 2008; 31: 1347– 1355. doi: 10.1291/ hypres.31.1347.

21. Ibata J, Sasaki H, Kakimoto T et al. Cardio‑ ankle vascular index measures arterial wall stiffness independent of blood pressure. Diabetes Res Clin Pract 2008; 80: 265– 270. doi: 10.1016/ j.diabres.2007.12.016.

22. Shirai K, Song M, Suzuki J et al. Contradictory effects of beta1–  and alpha1– aderenergic receptor blockers on cardio‑ ankle vascular stiffness index (CAVI) –  CAVI independent of blood pressure. J Atheroscler Thromb 2011; 18: 49– 55.

23. Namekata T, Suzuki K, Ishizuka N et al. Establishing baseline criteria of cardio‑ ankle vascular index as a new indicator of arteriosclerosis: a cross‑ sectional study. BMC Cardiovasc Disord 2011; 11: 51. doi: 10.1186/ 1471‑ 2261‑ 11‑ 51.

24. Fukuda‑ Denshi Company, LTD, Tokyo, Japan. [online] Available from: http:/ / www.fukuda.co.jp/ english/ products/ special_features/ vasera/ cavi.html.

25. Frank OD. Die theorie de pulswellen. Z Biol 1926; 85: 91– 130.

26. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 2012; 33: 1058– 1066. doi: 10.1093/ eurheartj/ ehs041.

27. Matsuda Y, Kawate H, Matsuzaki C et al. Reduced arterial stiffness in patients with acromegaly: non‑invasive assessment by the cardio‑ ankle vascular index (CAVI). Endocr J 2013; 60: 29– 36.

28. Wu HT, Hsu PC, Liu AB et al. Six‑ channel ECG‑based pulse wave velocity for assessing whole‑ body arterial stiffness. Blood Press 2012; 21: 167– 176. doi: 10.3109/ 08037051.2012.681853.

29. Huck CJ, Bronas UG, Williamson EB et al. Noninvasive measurements of arterial stiffness: repeatability and interrelationships with endothelial function and arterial morphology measures. Vasc Health Risk Manag 2007; 3: 343– 349.

30. Hayashi S. Significance of plasma D‑dimer in relation to the severity of atherosclerosis among patients evaluated by non‑invasive indices of cardio‑ ankle vascular index and carotid intima‑ media thickness. Int J Hematol 2010; 92: 76– 82. doi: 10.1007/ s12185‑ 010‑ 0622‑ 9.

31. Horinaka S, Yabe A, Yagi H et al. Cardio‑ ankle vascular index could reflect plaque burden in the coronary artery. Angiology 2011; 62: 401– 408. doi: 10.1177/ 0003319710395561.

32. Nakamura K, Tomaru T, Yamamura S et al. Cardio‑ ankle vascular index is a candidate predictor of coronary atherosclerosis. Circ J 2008; 72: 598– 604.

33. Park HE, Choi SY, Kim MK et al. Cardio‑ ankle vascular index reflects coronary atherosclerosis in patients with abnormal glucose metabolism: assessment with 256 slice multi‑detector computed tomography. J Cardiol 2012; 60: 372– 376. doi: 10.1016/ j.jjcc.2012.07.005.

34. Korkmaz L, Adar A, Korkmaz AA et al. Atherosclerosis burden and coronary artery lesion complexity in acute coronary syndrome patients. Cardiol J 2012; 19: 295– 300.

35. Shimoyama T, Iguchi Y, Kimura K et al. Stroke patients with cerebral microbleeds on MRI scans have arteriolosclerosis as well as systemic atherosclerosis. Hypertens Res 2012; 35: 975– 979. doi: 10.1038/ hr.2012.84.

36. Saji N, Kimura K, Shimizu H et al. Silent brain infarct is independently associated with arterial stiffness indicated by cardio‑ ankle vascular index (CAVI). Hypertens Res 2012; 35: 756– 760. doi: 10.1038/ hr.2012.20.

37. Choi SY, Park HE, Seo H et al. Arterial stiffness using cardio‑ ankle vascular index reflects cerebral small vessel disease in healthy young and middle aged subjects. J Atheroscler Thromb 2013; 20: 178– 185.

38. Takatori K, Matsumoto D, Okada Y et al. Effect of intensive rehabilitation on physical function and arterial function in community‑ dwelling chronic stroke survivors. Top Stroke Rehabil 2012; 19: 377– 383. doi: 10.1310/ tsr1905‑ 377.

39. Masugata H, Senda S, Murao K et al. Association between Urinary 8– hydroxydeoxyguanosine, an Indicator of oxidative stress, and the cardio‑ ankle vascular index in hypertensive patients. J Atheroscler Thromb 2012; 19: 747– 755.

40. Kotani K, Yamada S, Yamada T et al. Oxidized lipoprotein(a) and cardio‑ ankle vascular index (CAVI) in hypertensive subjects. Heart Vessels 2013; 28: 461– 466. doi: 10.1007/ s00380‑ 012‑ 0265‑ 2.

41. Mizuguchi Y, Oishi Y, Tanaka H et al. Arterial stif­fness is associated with left ventricular diastolic function in patients with cardiovascular risk factors: early detection with the use of cardio‑ ankle vascular index and ultrasonic strain imaging. J Card Fail 2007; 13: 744– 751.

42. Sakane K, Miyoshi T, Doi M et al. Association of new arterial stiffness parameter, the cardio‑ ankle vascular index, with left ventricular diastolic function. J Atheroscler Thromb 2008; 15: 261– 268.

43. Yoshida A, Sugiyama T, Sagawa N. Assessment of the cardioankle vascular index in pregnant women complicated with hypertensive disorders. ISRN Obstet Gynecol 2011; 2011: 1– 5. doi: 10.5402/ 2011/ 919816.

44. Ishimitsu T, Numabe A, Masuda T et al. Angiotensin‑II receptor antagonist combined with calcium channel blocker or diuretic for essential hypertension. Hypertens Res 2009; 32: 962– 968. doi: 10.1038/ hr.2009.133.

45. Kinouchi K, Ichihara A, Bokuda K et al. Differential effects in cardiovascular markers between high‑dose angiotensin II receptor blocker monotherapy and combination therapy of ARB with calcium channel blocker in hypertension (DEAR Trial). Int J Hypertens 2011; 2011: 284823. doi: 10.4061/ 2011/ 284823.

46. Xu Y, Yan H, Yao J et al. Cardio‑ ankle vascular index evaluations revealed that co‑ treatment of ARB anti‑hypertension medication with traditional Chinese medicine improved arterial functionality. J Cardiovasc Pharmacol 2013; 61: 355– 360. doi: 10.1097/ FJC.0b013e31827afddf.

47. Kim ES, Moon SD, Kim HS et al. Diabetic peripheral neuropathy is associated with increased arterial stiffness without changes in carotid intima‑ media thickness in type 2 diabetes. Diabetes Care 2011; 34: 1403– 1405. doi: 10.2337/ dc10‑ 2222.

48. Kim KJ, Lee BW, Kim HM et al. Associations between cardio‑ ankle vascular index and microvascular complications in type 2 diabetes mellitus patients. J Atheroscler Thromb 2011; 18: 328– 336.

49. Wakabayashi I, Masuda H. Association of acute‑ phase reactants with arterial stiffness in patients with type 2 diabetes mellitus. Clin Chim Acta 2006; 365: 230– 235.

50. Miyashita Y, Endo K, Saiki A et al. Effect of ezetimibe monotherapy on lipid metabolism and arterial stiffness assessed by cardio‑ ankle vascular index in type 2 diabetic patients. J Atheroscler Thromb 2010; 17: 1070– 1076.

51. Takaki A, Ogawa H, Wakeyama T et al. Cardioankle vascular index is a new noninvasive parameter of arterial stiffness. Circ J 2007; 71: 1710– 1714.

52. Soška V, Dobšák P, Dušek L et al. Cardio‑ ankle vascular index in heterozygous familial hypercholesterolemia. J Atheroscler Thromb 2012; 19: 453– 461.

53. Miyashita Y, Endo K, Saiki A et al. Effects of pitavastatin, a 3– hydroxy‑ 3– methylglutaryl coenzyme a reductase inhibitor, on cardio‑ ankle vascular index in type 2 diabetic patients. J Atheroscler Tromb 2009; 16: 539– 545.

54. Liu H, Zhang X, Feng X et al. Effects of metabolic syndrome on cardio‑ ankle vascular index in middle‑ aged and elderly Chinese. Metab Syndr Relat Disord 2011; 9: 105– 110. doi: 10.1089/ met.2010.0019.

55. Usui T, Tochiya M, Sasaki Y et al. Effects of natural S‑ equol supplements on overweight or obesity and metabolic syndrome in the Japanese, based on sex and equol status. Clin Endocrinol 2013; 78: 365– 372. doi: 10.1111/ j.1365‑ 2265.2012.04400.x.

56. Kasai T, Inoue K, Kumagai T et al. Plasma pentraxin 3 and arterial stiffness in men with obstructive sleep apnea. Am J Hypertens 2011; 24: 401– 407. doi: 10.1038/ ajh.2010.248.

57. Kumagai T, Kasai T, Kato M et al. Establishment of the cardio‑ ankle vascular index in patients with obstructive sleep apnea. Chest 2009; 136: 779– 786.

58. Yoshihisa A, Suzuki S, Yamaki T et al. Impact of adaptive servo‑ ventilation on cardiovascular function and prognosis in heart failure patients with preserved left ventricular ejection fraction and sleep‑ disordered breathing. Eur J Heart Fail 2013; 15: 543– 550. doi: 10.1093/ eurjhf/ hfs197.

59. Takenaka T, Hoshi H, Kato N et al. Cardio‑ ankle vascular index to screen cardiovascular diseases in patients with end‑stage renal diseases. J Atheroscler Thromb 2008; 15: 339– 344.

60. Kimura H, Takeda K, Tsuruya K et al. Left ventricular mass index is an independent determinant of diastolic dysfunction in patients on chronic hemodialysis: a tissue Doppler imaging study. Nephron Clin Pract 2011; 117: c67– c73. doi: 10.1159/ 000319649.

61. Sato H, Miida T, Wada Y et al. Atherosclerosis is accelerated in patients with long‑term well‑controlled systemic lupus erythematosus (SLE). Clin Chim Acta 2007; 385: 35– 42.

62. Kume K, Amano K, Yamada S et al. Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: an open‑ label randomized controlled trial. J Rheumatol 2011; 38: 2169– 2171. doi: 10.3899/ jrheum.110340.

63. Noike H, Nakamura K, Sugiyama Y et al. Changes in cardio‑ ankle vascular index in smoking cessation. J Atheroscler Thromb 2010; 17: 517– 525.

64. Kubozono T, Miyata M, Ueyama K et al. Acute and chronic effects of smoking on arterial stiffness. Circ J 2011; 75: 698– 702.

65. Shiba T, Takahashi M, Hori Y et al. Optic nerve head circulation determined by pulse wave analysis is significantly correlated with cardio ankle vascular index, left ventricular diastolic function, and age. J Atheroscler Thromb 2012; 19: 999– 1005.

66. Kadota K, Takamura N, Aoyagi K et al. Availability of cardio‑ ankle vascular index (CAVI) as a screen­ing tool for atherosclerosis. Circ J 2008; 72: 304– 308.

67. Cecelja M, Chowienczyk P. Role of arterial stif­fness in cardiovascular disease. J R Soc Med Cardiovasc Dis 2012; 1: 11. doi: 10.1258/ cvd.2012.012016.

68. Avolio AP, Chen SG, Wang RP et al. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 1983; 68: 50– 58.

69. Mitchell GF, Parise H, Benjamin EJ et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension 2004; 43: 1239– 1245.

70. Yasmin, McEniery CM, O’Shaughnessy KM et al. Variation in the human matrix metalloproteinase‑ 9 gene is associated with arterial stiffness in healthy individuals. Arterioscler Thromb Vasc Biol 2006; 26: 1799– 1805.

71. O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 2007; 50: 1– 13.

72. Kim B, Takada K, Oka S et al. Influence of blood pressure on cardio‑ ankle vascular index (CAVI) examined based on percentage change during general anesthesia. Hypertens Res 2011; 34: 779– 783. doi: 10.1038/ hr.2011.31.

73. Shirai K. Analysis of vascular function using the cardio‑ ankle vascular index (CAVI). Hypertens Res 2011; 34: 684– 685. doi: 10.1038/ hr.2011.40.

74. Kawano H, Iemitsu M, Gando Y et al. Habitual rowing exercise is associated with high physical fitness without affecting arterial stiffness in older men. J Sports Sci 2012; 30: 241– 246. doi: 10.1080/ 02640414.2011.635311.

75. Takenaka T, Hoshi H, Kato N et al. Cardio‑ ankle vascular index to screen cardiovascular diseases in patients with end‑stage renal diseases. J Atheroscler Thromb 2008; 15: 339– 344.

76. Takahashi M, Shiba T, Hirano K et al. Acute de­crease of cardio‑ ankle vascular index with the administration of beraprost sodium. J Atheroscler Thromb 2012; 19: 479– 484.

77. Liu H, Saijo Y, Zhang X et al. Comparative analysis of cardio‑ ankle vascular index between Japanese and Rus­sians. In: Esashi M, Ishii K, Ohuchi N et al (eds). Future medical engineering based on bio­nanotechnology: Proceedings of the Final Symposium of the Tohoku University 21st Century Center of Excellence Program. London: Imperial College Press 2006: 411– 418.

78. Uurtuya S, Taniguchi N, Kotani K et al. Comparative study of the cardio‑ ankle vascular index and ankle‑ brachial index between young Japanese and Mongolian subjects. Hypertens Res 2009; 32: 140– 144. doi: 10.1038/ hr.2008.28.

79. Uurtuya S, Kotani K, Taniguchi N, et al. Comparative study of atherosclerotic parameters in Mongolian and Japanese patients with hypertension and diabetes mellitus. J Atheroscler Thromb 2010; 17: 181– 188.

80. Hirasada K, Niimura H, Kubozono T et al. Values of cardio‑ ankle vascular index (CAVI) between Amami islands and Kagoshima mainland among health checkup examinees. J Atheroscler Thromb 2012; 19: 69– 80.

81. Martí R, Parramon D, García‑ Ortiz L et al. Improving interMediAte risk management. MARK study. BMC Cardiovasc Disord 2011; 11: 61– 66. doi: 10.1186/ 1471‑ 2261‑ 11‑ 61.

82. Nagayama D, Saiki A, Endo K et al. Improvement of cardio‑ ankle vascular index by glimepiride in type 2 diabetic patients. Int J Clin Pract 2010; 64: 1796– 1801. doi: 10.1111/ j.1742‑ 1241.2010.02399.x.

83. Miyoshi T, Doi M, Hirohata S et al. Olmesartan reduces arterial stiffness and serum adipocyte fatty acid‑binding protein in hypertensive patients. Heart Vessels 2011; 26: 408– 413. doi: 10.1007/ s00380‑ 010‑ 0060‑ x.

Labels
Paediatric cardiology Internal medicine Cardiac surgery Cardiology
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account