#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Karcinom prsu u nosiček mutací v genu BRCA1/2 – léčíme ho jinak? Zaměřeno na systémovou terapii u mutací v genu BRCA1/2


Authors: Markéta Palácová
Published in: Klin Onkol 2019; 32(Supplementum2): 24-30
Category: Review
doi: https://doi.org/10.14735/amko2019S24

Overview

Hereditary breast cancer syndrome is associated with a higher risk of developing breast cancer and accounts for 5–10% of all breast tumors. Is it possible that mutations in BRCA1/2 genes (which are involved in DNA repair genes) should be treated differently from sporadic breast cancer? In addition to anthracyclines, taxanes are effective against tumors with a BRCA2 mutation. A TNT trial showed that platinum derivatives have marked effects against metastatic breast cancer. Data from neoadjuvant trials testing efficacy in triple negative cancer confirm that neoadjuvant chemotherapy is more effective against sporadic tumors, whereas the effect of carboplatin is not statistically significant, as opposed to sporadic cancer. A new group of therapeutics, particularly for tumors with mutations in BRCA1/2 genes, is PARP inhibitors. These treatments were effective not only against triple negative tumors but also against luminal tumors.

The author declares she has no potential confllcts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted: 5. 6. 2019

Accepted: 12. 6. 2019

Keywords:

breast cancer – BRCA1/2 mutation – genomic tests – platinum salts – PARP inhibitors


Sources

1. Gronwald J, Robidoux A, Tung N et al. Duration of tamoxifen use and the risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 2014; 146 (2): 421–427. doi: 10.1007/s10549-014-3026-3.

2. Mavaddat N, Barrowdale D, Andrulis IL et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 2012; 21 (1): 134–147. doi: 10.1158/1055-9965.EPI-11-0775.

3. Ditchi Y, Broudin C, El Dakdouki Y et al. Low risk of invasive lobular carcinoma of the breast in carriers of BRCA1 and TP53 germline mutations. Breast J 2019; 25 (1): 16–19. doi: 10.1111/tbj.13154.

4. Sønderstrup IM, Jensen MB, Ejlertsen B et al. Subtypes in BRCA-mutated breast cancer. Human Pathology 2019; 84: 192–201. doi: 10.1016/j.humpath.2018.10.005.

5. Shah PD, Patil S, Dickler LN et al. Twenty-one-gene recurrence score assay in BRCA-associated versus sporadic breast cancers: differences based on germline mutation status. Cancer 2016; 122 (8): 1178–1184. doi: 10.1002/cncr.29903.

6. Lewin R, Sulkes A, Shochat T et al. Oncotype – DX recurrence score distribution in breast cancer patiens with BRCA1/2 mutations. Breast Cancer Res Treat 2016; 157 (3): 511–516. doi: 10.1007/s10549-016-3836-6.

7. Halpern N, Sonnenblick A, Uziely B et al. Oncotype DX recurrence score among BRCA1/2 germline carriers with hormone receptors positive breast cancer. Int J Cancer 2017; 140 (9): 2145–2149. doi: 10.1002/ijc.30616.

8. Brekelmans CT, Tilanus-Linthorst MM, Seynaeve C et al. Tumour characteristics, survival and prognostic factors of hereditary breast cancer from BRCA1, BRCA2 and non-BRCA1/2 families as compared to sporadic breast cancer cases. Eur J Cancer 2007; 43 (5): 867–876. doi: 10.1016/j.ejca.2006.12.009.

9. Pierce LJ, Levin AM, Rebbeck RT et al. Ten-years multi-institutional results of breast-conserving surgery and radiotherapy in BRCA1/2-associated stage I/II breast cancer. J Clin Oncol 2006; 24 (16): 2437–2443. doi: 10.1200/JCO.2005.02.7888.

10. Pierce LJ, Phillips KA, Griffith KA et al. Local therapy in BRCA1 and BRCA2 mutation carriers with operable breast cancer: comparison of breast conservation and mastectomy. Breast Cancer Res Treat 2010; 121 (2): 389–398. doi: 10.1007/s10549-010-0894-z.

11. Ahmed F, Christos PJ, Singh P et al. Analysis of outcomes in patients with BRCA1/2 breast cancer mutations treated with accelerated partial breast irradiation (APBI). Am J Clin Oncol 2019; 42 (5): 446–453. doi: 10.1097/COC.0000000000000542.

12. Heemskerk-Gerritsen BA, Seynaeve C, van Asperen CJ et al. Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revitising the evidence for risk reduction. J Natl Cancer Inst 2015; 107 (5): djv033. doi: 10.1093/jnci/djv033.

13. Kotsopoulos J, Huzarski T, Gronwald J et al. Bilateral oophorectomy and breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2017; 109 (1): 1–7. doi: 10.1093/jnci/djw177.

14. Domchek SM, Friebel TM, Singer CF et al. Association of risk-reducing sugery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 2010; 304 (9): 967–975. doi: 10.1001/jama.2010.1237.

15. Finch AP, Lubinski J, Moller P et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol 2014; 32 (15): 1547–1553. doi: 10.1200/JCO.2013.53.2820.

16. Mavaddat N, Peock S, Frost D et al. Cancer risk for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 2013; 105 (11): 812–822. doi: 10.1093/jnci/djt095.

17. Metcalfe K, Lynch HT, Foulkes WD et al. Effect of oophorectomy on survival after breast cancer in BRCA1 and BRCA2 mutation carriers. JAMA Oncol 2015; 1 (3): 306–313. doi: 10.1001/jamaoncol.2015.0658.

18. Cortesi L, Masini C, Cirilli C et al. Favourable ten-year overall survival in a Caucasian population with high probability of hereditary breast cancer. BMC Cancer 2010; 10 (1): 90. doi: 10.1186/1471-2407-10-90.

19. Bordeleau L, Panchal S, Goodwin P et al. Prognosis of BRCA-associated breast cancer: a summary of evidence. Breast Cancer Res Treat 2010; 119 (1): 13–24. doi: 10.1007/s10549-009-0566-z.

20. Musolino A, Bella MA, Bortesi B et al. BRCA mutations, molecular markers, and clinical variables in early-onset breast cancer: a population-based study. Breast 2007; 16 (3): 280–292. doi: 10.1016/j.breast.2006.12.003.

21. Schmidt MK, van den Broek AJ, Tollenaar RA et al. Breast cancer survival of BRCA1/BRCA2 mutation carriers in a hospital-based cohort of young women. J Natl Cancer Inst 2017; 109 (8). doi: 10.1093/jnci/djw329.

22. Baretta Z, Mosellin S, Goldin E et al. Effect of BRCA germinal mutations on breast cancer prognosis: a systematic review and meta-analysis. Medicine (Baltimore) 2016; 95 (40): e4975. doi: 10.1097/MD.0000000000004975.

23. Copson ER, Maishman TC, Tapper WJ et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol 2018; 19 (2): 169–180. doi: 10.1016/S1470-2045 (17) 308 91-4.

24. Welcsh PL, Owens KN, King MC et al. Insights into functions of BRCA1 and BRCA2. Trends Genet 2000; 16 (2): 69–74.

25. Patel KJ, Yu VP, Lee H et al. Involvement of BRCA2 in DNA repair. Mol Cell 1998; 1 (3): 347–357.

26. Decatris MP, Sundar S, O’Byrne KJ et al. Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat Rev 2004; 30 (1): 53–81. doi: 10.1016/S0305-7372 (03) 00139-7.

27. Tassone P, Tagliaferri P, Perricelli A et al. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer 2003; 88 (8): 1285–1291. doi: 10.1038/sj.bjc.6600859.

28. Lafarge S, Sylvain V, Ferrara M et al. Inhibition of BRCA1 leads to increased chemoresistance to mikrotubule-interfering agents, an effect that involves the JNK pathway. Oncogene 2001; 20 (45): 6597–6606. doi: 10.1038/sj.onc.1204812.

29. Bhattacharyya A, Ear US, Koller BH et al. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 2000; 275 (31): 23899–23903. doi: 10.1074/jbc.C000276200.

30. Byrski T, Huzarski T, Dent R et al. Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 2014; 147 (2): 401–405. doi: 10.1007/s10549-014-3100-x.

31. Wang C, Zhang J, Wang Y et al. Prevalence of BRCA1 mutations and responses to neoadjuvant chemotherapy among BRCA1 carriers and non-carriers with triple-negative breast cancer. Ann Oncol 2015; 26 (3): 523–528. doi: 10.1093/annonc/mdu559.

32. Hahnen E, Lederer B, Hauke J et al. Germline mutation status, pathological complete response and disease-free survival in triple-negative breast cancer: secondary analysis of the GeparSixto randomized clinical trial. JAMA Oncol 2017; 3 (10): 1378–1385. doi: 10.1001/jamaoncol.2017.1007.

33. Sikov WM, Berry DA, Perou CM et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophophamide on pathological complete response rates in stage II to III triple negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol 2015; 33 (1): 13–21. doi: 10.1200/JCO.2014.57.0572.

34. Alba E, Chacon JI, Lluch A et al. A randomized phase II trial of platinum salts in basal-like breast cancer patients in the neoadjuvant setting. Results from the GEICAM/2006-03, multicenter study. Breast Cancer Res Treat 2012; 136 (2): 487–493. doi: 10.1007/s10549-012-2100-y.

35. Loibl S, O’Shaughnessy J, Untch M et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol 2018; 19 (4): 497–509. doi: 10.1016/S1470-2045 (18) 30111-6.

36. Byrski T, Dent R, Blecharz P et al. Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patient with BRCA1-positive metastatic breast cancer. Breast Cancer Res 2012; 14 (4): 110. doi: 10.1186/bcr3231.

37. Isakoff SJ, Mayer EL, He L et al. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple negative breast cancer. J Clin Oncol 2015; 33 (17): 1902–1909. doi: 10.1200/JCO.2014.57.6660.

38. Tutt A, Tovey H, Cheang MC et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT trial. Nat Med 2018; 24 (5): 628–637. doi: 10.1038/s41591-018-0009-7.

39. Seynaeve C, Jager A, Hooning M et al. Activity of taxane chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers compared to sporadic BC patients. J Clin Oncol 2010; 28: 1020a.

40. Boughey JC, Kalari KR, Suman VJ et al. Role of germline BRCA status and tumor homologous recombination (HR) deficiency in response to neoadjuvant weekly paclitaxel followed by anthracycline-based chemotherapy. Cancer Res 2016; 76 (Suppl 4): P3–07–29a.

41. Murai J, Huang S, Das BB et al. Trapping of PARP1 and PARP2 by clinical inhibitors. Cancer Res 2012; 72 (21): 5588–5599. doi: 10.1158/0008-5472.CAN-12-2753.

42. Rottenberg S, Jaspers JE, Kersbergen A et al. High sensitivity of BRCA1-deficient malignant tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proct Natl Acad Sci USA 2008; 105 (44): 17079–17084. doi: 10.1073/pnas.0806092105.

43. Juvekar A, Burga LN, Hu H et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2012; 2 (11): 1048–1063. doi: 10.1158/2159-8290.CD-11-0336.

44. Robson M, Im SA, Senkus E et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017; 377 (6): 523–533. doi: 10.1056/NEJMoa1706450.

45. Robson ME, Tung N, Conte P et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol 2019; 30 (4): 558–566. doi: 10.1093/annonc/mdz012.

46. Litton JK, Rugo HS, Ettl J et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 2018; 379 (8): 753–763. doi: 10.1056/NEJMoa1802905.

47. Han HS, Dieras V, Robson M et al. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patiens with BRCA1/2 locally reccurent/metastatic breast cancer: randomized phase II trial. Ann Oncol 2018; 29 (1): 154–161. doi: 10.1093/annonc/mdx505.

48. Rugo HS, Olopade Ol, de Michele A et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N Engl J Med 2016; 375 (1): 23–34. doi: 10.1056/NEJMoa1513749.

49. Miller K, Tong Y, Jones DR et al. Cisplatin with or without rucaparib after preoperative chemotherapy in patient with triple-negative breast cancer: final efficacy results of Hoosier oncology group BRE09-146. J Clin Oncol 2015; 33 (15): 1082a.

50. Turner NC, Telli ML, Rugo HS et al. Final results of a phase 2 study of talazoparib following platinum or multiple cytotoxin regiment in advanced breast cancer patients with germline BRCA1/2 mutations (ABRAZO). J Clin Oncol 2017; 35 (Suppl 1): abstr. 107.

51. Mehta MP, Wang D, Wang F et al. Veliparib in combination with whole brain radiation therapy in patiens with brain metastases: results of a phase 1 study. J Neurooncol 2015; 122 (2): 409–417. doi: 10.1007/s11060-015-1733-1.

52. Barber LJ, Sandhu S, Chen L et al. Secondary mutations in BRCA2 associated with clinical resistence to a PARP inhibitor. J Pathol 2013; 229 (3): 422–429. doi: 10.1002/path.4140.

53. Montoni A, Robu M, Pouliot E et al. Resistence to PARP-inhibitors in cancer therapy. Front Pharmacol 2013; 4: 18. doi: 10.3389/fphar.2013.00018.

54. Narod SA, Metcalfe K, Lynch HT et al. Should all BRCA1 mutation carriers with stage I breast cancer receive chemotherapy? Breast Cancer Res Treat 2013; 138 (1): 273–279. doi: 10.1007/s10549-013-2429-x.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue Supplementum2

2019 Issue Supplementum2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#