Recommendations for Preventive Care for Women with Rare Genetic Cause of Breast and Ovarian Cancer


Authors: Lenka Foretová 1;  Marie Navrátilová 1;  Marek Svoboda 1,2;  Petra Vašíčková 1;  Eva Hrabincová Sťahlová 1;  Jana Házová 1;  Petra Kleiblová 3;  Zdeněk Kleibl 3;  Eva Macháčková 1;  Markéta Palácová 2;  Katarína Petráková 2
Authors‘ workplace: Oddělení epidemiologie a genetiky nádorů, Masarykův onkologický ústav, Brno 1;  Klinika komplexní onkologické péče, Masarykův onkologický ústav, Brno 2;  Ústav biochemie a experimentální onkologie 1. LF UK, Praha 3
Published in: Klin Onkol 2019; 32(Supplementum2): 6-13
Category: Review
doi: 10.14735/amko2019S6

Overview

An inherited predisposition to breast cancer underlies 5–10% of breast tumors. High-risk BRCA1 and BRCA2 genes result in an 85% lifetime risk of breast cancer and a 20–60% lifetime risk of ovarian cancer. Next-generation sequencing or massive parallel sequencing are now established testing methods that enable screening for many genes that predispose to heterogeneous hereditary cancer syndromes (22 genes are required by the health insurance companies). In addition to BRCA1 and BRCA2, inherited mutations in other genes predispose to breast and/or ovarian cancer. High-risk breast cancer genes include TP53, STK11, CDH1, PTEN, PALB2, and NF1, while moderate-risk (2–4 times increased risk) breast cancer genes include ATM, CHEK2, and NBN. Moderate risk is also suggested for Lynch syndrome, MUTYH, BRIP1, RAD51C, RAD51D, BARD1, FANCA, FANCC, FANCM, BLM, WRN genes. In heterozygotes for other recessive syndromes the risk of developing breast cancer is subject to current research. Low-risk genes are (mostly) irrelevant from a clinical perspective. Other genes that increase the risk of ovarian cancer include the genes for Lynch syndrome, the BRIP1, RAD51C and RAD51D genes. Preventive care should be proposed based on assumed cumulative breast cancer risk (see http: //www.mamo.cz): a risk of >20% for BRCA1/2, TP53, PTEN, STK11, CDH1, PALB2, CHEK2, ATM, and NF1; and a risk of 10–20% for BRIP1, RAD51C, RAD51B, BARD1, FANCA, FANCC, FANCM, NBN, BLM, and WRN. The genetic risk should be assessed by a geneticist and be based on inherited mutations and empirical risk according to family history. Prophylactic mastectomy is considered for high-risk gene carriers but not for moderate-risk gene carriers; however, it may be considered if there is an underlying family history, a risk of parenchyma of the mammary gland, or other risk factors. Ovarian cancer risk increases significantly in carriers of the BRIP1, RAD51C, and RAD51D genes. For prevention of ovarian cancer, prophylactic salpingo-oophorectomy is an important component of preventive care. In ovarian cancer families with no identified risk germline mutation, preventive salpingo-oophorectomy is not routinely recommended but may be considered as the only efficient method of prevention due to the increased empirical risk (4 times) of ovarian cancer in first-degree relatives.

Supported by the grant project MH CZ – RVO (MMCI, 00209805), AZV 15-27695A and AZV 16-29959A.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted: 17. 5. 2019

Accepted: 31. 5. 2019

Keywords:

genes – BRCA1 – BRCA2 – genetic testing – prophylactic mastectomy – salpingo-oophorectomy – high-throughput nucleotide sequencing


Sources

1. Daly MB, Pilarski R, Berry M et al. Genetic/familial high-risk assessment: breast and ovarian version 2.2017. Natl Compr Canc Netw 2017; 15 (1): 9–20.

2. Maxwell KN, Domchek SM. Cancer treatment according to BRCA1 and BRCA2 mutations. Nat Rev Clin Oncol 2012; 9 (9): 520–528. doi: 10.1038/nrclinonc.2012.123.

3. Tung NM, Garber JE. BRCA1/2 testing: therapeutic implications for breast cancer management. Br J Cancer 2018 Jul; 119 (2): 141–152. doi: 10.1038/s41416-018-0127-5.

4. Rainville IR, Rana HQ. Next – generation sequencing for the inherited breast cancer risk: counseling through the complexity. Curr Oncol Rep 2014: 16 (3): 371–382. doi: 10.1007/s11912-013-0371-z.

5. Nielsen SM, Eccles DM, Romero IL et al. Genetic testing and clinical management practices for variants in non-BRCA1/2 breast (and breast/ovarian) cancer susceptibility genes: an international survey by the Evidence-Based Network for the Intepretation of Germline Mutant Alleles (ENIGMA) clinical working group. [online]. Available from: https: //ascopubs.org/doi/full/10.1200/PO.18.00091.

6. Foretová L, Macháčková E, Palácová M et al. Doporučení rozšíření indikačních kriterií ke genetickému testování mutací v genech BRCA1 a BRCA2 u hereditárního syndromu nádorů prsu a ovarií. Klin Onkol 2016; 29 (Suppl 1): S9–S13. doi: 10.14735/amko2016S9.

7. NCCN Guidelines Version 3.2019. Hereditary breast and/or ovarian cancer syndrome. National Comprehensive Cancer Network. [online]. Available from: http: //www.nccn.org/professionals/physician_gls/f_guidelines.asp.

8. Modrá kniha ČOS. 23. aktualizace. Brno: Masarykův onkologický ústav 2017: 110.

9. Shindo K, Yu Jun, Suenaga M et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 2017; 35 (30): 3382–3390. doi: 10.1200/JCO.2017.72.3502.

10. Hu CH, Hart SN, Polley EC et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 2018; 319 (23): 2401–2409. doi: 10.1001/jama.2018.6228.

11. Wong-Brown MW, Meldrum CJ, Carpenter JE. Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer. Breast Cancer Res Treat 2015; 150 (1): 71–80. doi: 10.1007/s10549-015-3293-7.

12. Greenup R, Buchanan A, Lorizio W et al. Prevalence of BRCA mutations among women with triple-negative breast cancer (TNBC) in a genetic counseling cohort. Ann Surg Oncol 2013; 20 (10): 3254–3258. doi: 10.1245/s10434-013-3205-1.

13. Couch FJ, Hart SN, Sharma P et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 2015; 32 (4): 304–311. doi: 10.1200/JCO.2014.57.1414.

14. Soukupova J, Zemankova P, Lhotova K et al. Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS One 2018; 13 (4): e0195761. doi: 10.1371/journal.pone.0195761.

15. Soukupova J, Zemankova P, Kleiblova P et al. CZECANCA: CZEch CAncer paNel for clinical application – design and optimization of the targeted sequencing panel for the identification of cancer susceptibility in high-risk individuals from the Czech Republic. Klin Onkol 2016; 29 (Suppl 1): S46–S54. doi: 10.14735/amko2016S46.

16. Dražan L, Veselý J, Hýža P et al. Chirurgická prevence karcinomu prsu u pacientek s dědičným rizikem. Klin Onkol 2012; 25 (Suppl 1): S78–S83. doi: 10.14735/amko20121S78.

17. Dražan L. Profylaktická mastektomie a její indikace u rizikových žen. Klin Onkol 2006; 19 (Suppl 1): S97–S100.

18. Zikán M. Gynekologická prevence a gynekologické aspekty péče u nosiček genů BRCA1 a BRCA2. Klin Onkol 2016; 29 (Suppl 1): S22–S30. doi: 10.14735/amko2016S22.

19. Zikán M, Kalábová R. Doporučení k provedení profylaktické operace pro snížení rizika gynekologických malignit u žen s hereditárním rizikem. Klin Onkol 2009; 22 (Suppl 1): S58–S59.

20. Hüttelová R, Kleibl Z, Řezáčová J et al. Předpoklady pro preimplantační genetickou diagnostiku (PGD) u nosičů mutací v nádorových predispozičních genech. Klin Onkol 2009; 22 (Suppl 1): S69–S74.

21. Veselá K, Kocur T, Horák J et. al. Asistovaná reprodukce a preimplantační genetická diagnostika u pacientek ohrožených karcinomem prsu. Klin Onkol 2016; 29 (Suppl 1): S93–S99. doi: 10.14735/amko2016S93.

22. Koudová M, Puchmajerová A. Rizika solidních nádorů u heterozygotních přenašečů recesivních syndromů. Klin Onkol 2019; 32 (Suppl 2): 2S14–2S23. doi: 10.14735/amko2019S14.

23. Paluch-Shimon S, Gardoso F, Sessa C et al. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO Clinical Practice Guidelines for cancer prevention and screening. Ann Oncol 2016; 27 (Suppl 5): 103–110. doi: 10.1093/annonc/mdw327.

24. Taylor A, Brady AF, Frayling IM. Consensus for genes to be included on cancer panel tests offered by UK genetics services: guidelines of th UK Cancer Genetics Group. J Med Genet 2018; 55 (6): 372–377. doi: 10.1136/jmedgenet-2017-105188.

25. Plevová P, Novotný J, Petráková K et al. Syndrom hereditárního karcinomu prsu a ovarií. Klin Onkol 2009; 22 (Suppl 1): S8–S11.

26. MAMO.CZ. [online]. Dostupné z: http: //www.mamo.cz/.

27. Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Cancer 1994; 73 (3): 643–651. doi: 10.1002/1097-0142 (19940201) 73.

28. Petráková K, Palácová M, Schneiderová M et al. Syndrom hereditárního karcinomu prsu a ovarií. Klin Onkol 2016; 29 (Suppl 1): S14–S21. doi: 10.14735/amko2016 S14.

29. van Os NJ, Roeleveld N, Weemaes CM et al. Health risk for ataxia-teleangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guidelines. Clin Genet 2015; 90 (2): 105–117. doi: 10.1111/cge.12710.

30. Pohlreich P, Klebl Z, Kleiblová P et al. Klinický význam analýz genů středního rizika pro hodnocení rizika vzniku karcinomu prsu a dalších nádorů v České republice. Klin Onkol 2012; 25 (Suppl 1): S59–S66. doi: 10.14735/amko20121S59.

31. Puchmajerová A, Vasovčák P, Macháčková E et al. Hereditární difuzní karcinom žaludku. Klin Onkol 2012; 25 (Suppl 1): S30–S33. doi: 10.14735/amko20121S30.

32. Uusitalo E, Rantanen M, Kallionpää RA et al. Distinctive cancer associations in patients with neurofibromatosis type I. J Clin Oncol 2016; 34 (17): 1978–1985. doi: 10.1200/JCO.2015.65.3576.

33. Petrák B, Plevová P, Novotný J et al. Neurofibromatosis von Recklinghausen. Klin Onkol 2009; 22 (Suppl 1): S38–S44.

34. Janatová M, Borecká M, Soukupová J et al. PALB2 jako další kandidátní gen pro genetické testování u pacientů s hereditárním karcinomem prsu v České republice. Klin Onkol 2016; 29 (Suppl 1): S31–S34. doi: 10.14735/amko2016S31.

35. Puchmajerová A, Vasovčák P, Křepelová A et al. Cowdenův syndrom. Klin Onkol 2009; 22 (Suppl 1): S56–S57.

36. Puchmajerová A, Vasovčák P, Křepelová A. Peutz-Jeghersův syndrom. Klin Onkol 2009; 22 (Suppl 1) S36–S37.

37. Plevová P, Krutílková V, Petráková K et al. Syndrom Li-Fraumeni. Klin Onkol 2009; 22 (Suppl 1): S20–S22.

38. Foretová L, Štěrba J, Opletal P et al. Li-Fraumeni syndrom – návrh komplexní preventivní péče o nosiče TP53 mutace s použitím celotělové magnetické rezonance. Klin Onkol 2012; 25 (Suppl 1): S49–S54. doi: 10.14735/amko20121S49.

39. Plevová P, Novotný J, Šachlová M et al. Hereditární nepolypózní kolorektální karcinom (HNPCC, Lynchův syndrom). Klin Onkol 2009; 22 (Suppl 1): S12–S15.

40. Aretz S, Genuardi M, Hes FJ et al. Clinical utility gene card for: MUTYH-associated polyposis (MPA), autosomal recessive colorecatl adenomatous polyposis, multiple colorectal adenomas, multiple adenomatous polyps (MAP) – update 2012. Eur J Hum Genet 2013; 21 (1): 1. doi: 10.1038/ejhg.2012.163.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue Supplementum2

2019 Issue Supplementum2

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account