#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

BIOENGINEERED TISSUES FOR UROGENITAL REPAIR IN CHILDREN


Authors: A. Atala
Authors‘ workplace: Wake Forest University School of Medicine Medical Center Blvd, Winston Salem NC 21157
Published in: Urol List 2009; 7(2): 42-49

Overview

The most common congenital abnormalities involve the genitourinary system. These include hypospadias, in which the urethral opening develops in an improper position, and bladder exstrophy, in which the bladder develops on the outer surface of the abdomen. Children with these conditions will require immediate and multiple reconstructive surgeries. Currently, reconstruction may be performed with native nonurologic tissues (skin, gastrointestinal segments, or mucosa), homologous tissues from a donor (cadaver or living donor kidney), heterologous tissues or substances (bovine collagen), or artificial materials (silicone, polyurethane, teflon). However, these materials often lead to complications after reconstruction, either because the implanted tissue is rejected, or because inherently different functional parameters cause a mismatch in the system. For example, replacement of bladder tissue with gastrointestinal segments can be problematic due to the opposite ways in which these two tissues handle solutes – urologic tissue normally excretes material, and gastrointestinal tissue generally absorbs the same materials. This mismatched state can lead to metabolic complications as well as infection and other issues. The replacement of lost or deficient urologic tissues with functionally equivalent ones would improve the outcome of reconstructive surgery in the genitourinary system. This goal may soon be attainable with the use of tissue engineering techniques.

KEY WORDS:
tissue engineering, urogenital repair, scaffolds, cell-seeded-matrices, tissue implants


Sources

1. Atala A, Vacanti JP, Peters CA et al. Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol 1992; 148: 658–662.

2. Atala A, Cima LG, Kim W et al. Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol 1993; 150: 745–747.

3. Atala A, Freeman MR, Vacanti JP et al. Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol 1993; 150: 608–612.

4. Atala A, Kim W, Paige KT et al. Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol 1994; 152: 641–643; discussion 644.

5. Atala A, Bauer SB, Soker S et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006; 367: 1241–1246.

6. Atala A. Tissue engineering, stem cells, and cloning for the regeneration of urologic organs. Clin Plast Surg 2003; 30: 649–667.

7. Lin HK, Cowan R, Moore P et al. Characterization of neuropathic bladder smooth muscle cells in culture. J Urol 2004; 171: 1348–1352.

8. Lai JY, Yoon CY, Yoo JJ et al. Phenotypic and functional characterization of in vivo tissue engineered smooth muscle from normal and pathological bladders. J Urol 2002; 168: 1853–1857; discussion 1858.

9. Brivanlou AH, Gage FH, Jaenisch R et al. Stem cells. Setting standards for human embryonic stem cells. Science 2003; 300: 913–916.

10. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5395): 1145–1147. Erratum in Science 1998; 282(5395): 1827.

11. De Coppi P, Bartsch G Jr, Siddiqui MM et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106.

12. De Coppi P, Callegari A, Chiavegato A et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 2007; 177: 369–376.

13. Hochedlinger K, Rideout WM, Kyba M et al. Nuc­lear transplantation, embryonic stem cells and the potential for cell therapy. Hematol J 2004; 5: S114–S117.

14. Kim BS, Baez CE, Atala A. Biomaterials for tissue engineering. World J Urol 2000; 18: 2–9.

15. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998; 16: 224–230.

16. Ponder KP, Gupta S, Leland F et al. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sci USA 1991; 88: 1217–1221.

17. Brittberg M, Lindahl A, Nilsson A et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889–895.

18. Olsen L, Bowald S, Busch C et al. Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J Urol Nephrol 1992; 26: 323–326.

19. Kropp BP, Ludlow JK, Spicer D et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 1998; 52: 138–142.

20. Sievert KD, Bakircioglu ME, Nunes L et al. Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol 2000; 163: 1958–1965.

21. Atala A, Guzman L, Retik AB. A novel inert collagen matrix for hypospadias repair. J Urol 1999; 162: 1148–1151.

22. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 1999; 54: 407–410.

23. Le Roux PJ. Endoscopic urethroplasty with unsee­d­ed small intestinal submucosa collagen matrix grafts: a pilot study. J Urol 2005; 173: 140–143.

24. De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. J Urol 2002; 168: 1792–1793.

25. McDougal WS. Metabolic complications of urinary intestinal diversion. J Urol 1992; 147: 1199–1208.

26. Kaefer M, Hendren WH, Bauer SB et al. Reservoir calculi: a comparison of reservoirs constructed from stomach and other enteric segments. J Urol 1998; 160: 2187–2190.

27. Kaefer M, Tobin MS, Hendren WH et al. Continent urinary diversion: the Children’s Hospital experience. J Urol 1997; 157: 1394–1399.

28. Lailas NG, Cilento B, Atala A. Progressive ureteral dilation for subsequent ureterocystoplasty. J Urol 1996; 156: 1151–1153.

29. Satar N, Yoo JJ, Atala A. Progressive dilation for blad­der tissue expansion. J Urol 1999; 162: 829–831.

30. Blandy JP. Ileal pouch with transitional epithelium and anal sphincter as a continent urinary reservoir. J Urol 1961; 86: 749–767.

31. Blandy JP. The feasibility of preparing an ideal substitute for the urinary bladder. Ann R Coll Surg Engl 1964; 35: 287–311.

32. Harada N, Yano H, Ohkawa T et al. New surgical treatment of bladder tumours: mucosal denudation of the bladder. Br J Urol 1965; 37: 545–547.

33. Oesch I. Neourothelium in bladder augmentation. An experimental study in rats. Eur Urol 1988; 14: 328–329.

34. Salle JL, Fraga JC, Lucib A et al. Seromuscular enterocystoplasty in dogs. J Urol 1990; 144: 454–456; discussion 460.

35. Cheng E, Rento R, Grayhack JT et al. Reversed seromuscular flaps in the urinary tract in dogs. J Urol 1994; 152: 2252–2257.

36. Yoo JJ, Meng J, Oberpenning F et al. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 1998; 51: 221–225.

37. Probst M, Dahiya R, Carrier S et al. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol 1997; 79: 505–515.

38. Sutherland RS, Baskin LS, Hayward SW et al. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol 1996; 156: 571–577.

39. Piechota HJ, Dahms SE, Nunes LS et al. In vitro functional properties of the rat bladder regenerated by the bladder acellular matrix graft. J Urol 1998; 159: 1717–1724.

40. Badylak SF, Lantz GC, Coffey A et al. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 1989; 47: 74–80.

41. Kropp BP, Cheng EY, Lin HK et al. Reliable and rep­ro­ducible bladder regeneration using unseeded dis­tal small intestinal submucosa. J Urol 2004; 172: 1710–1713.

42. Kropp BP, Rippy MK, Badylak SF et al. Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J Urol 1996; 155: 2098– 2104.

43. Portis AJ, Elbahnasy AM, Shalhav AL et al. Laparoscopic augmentation cystoplasty with different biodegradable grafts in an animal model. J Urol 2000; 164: 1405–1411.

44. Landman J, Olweny E, Sundaram CP et al. Laparoscopic mid sagittal hemicystectomy and bladder reconstruction with small intestinal submucosa and reimplantation of ureter into small intestinal submucosa: 1-year follow up. J Urol 2004; 171: 2450–2455.

45. Oberpenning F, Meng J, Yoo JJ et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 1999; 17: 149–155.

46. Humes HD, Buffington DA, MacKay SM et al. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol 1999; 17: 451–455.

47. Humes HD, Weitzel WF, Bartlett RH et al. Renal cell therapy is associated with dynamic and individualized responses in patients with acute renal failure. Blood Purif 2003; 21: 64–71.

48. Lanza RP, Chung HY, Yoo JJ et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 2002; 20: 689–696.

49. Yoo JJ, Park HJ, Atala A. Tissue-engineering applications for phallic reconstruction. World J Urol 2000; 18: 62–66.

50. Yoo JJ, Atala A. Tissue engineering of genitourinary organs. Ernst Schering Res Found Workshop 2002; 35: 105–127.

51. Nukui F, Okamoto S, Nagata M et al. Complica­tions and reimplantation of penile implants. Int J Urol 1997; 4: 52–54.

52. Thomalla JV, Thompson ST, Rowland RG et al. Infectious complications of penile prosthetic implants. J Urol 1987; 138: 65–67.

53. Yoo JJ, Park HJ, Lee I et al. Autologous engineered cartilage rods for penile reconstruction. J Urol 1999; 162: 1119–1121.

54. De Filippo RE, Yoo JJ, Atala A. Engineering of vaginal tissue in vivo. Tissue Eng 2003; 9: 301–306.

55. Diamond DA, Caldamone AA. Endoscopic correction of vesicoureteral reflux in children using auto­logous chondrocytes: preliminary results. J Urol 1999; 162: 1185–1188.

56. Bent AE, Tutrone RT, McLennan MT et al. Treatment of intrinsic sphincter deficiency using autologous ear chondrocytes as a bulking agent. Neurourol Urodyn 2001; 20: 157–165.

57. Yokoyama T, Huard J, Chancellor MB. Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J Urol 2000; 18: 56–61.

58. Chancellor MB, Yokoyama T, Tirney S et al. Preli­minary results of myoblast injection into the urethra and bladder wall: a possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourol Urodyn 2000; 19: 279–287.

59. Yiou R, Yoo JJ, Atala A. Restoration of functional motor units in a rat model of sphincter injury by muscle precursor cell autografts. Transplantation 2003; 76: 1053–1060.

60. Strasser H, Berjukow S, Marksteiner R et al. Stem cell therapy for urinary stress incontinence. Exp Gerontol 2004; 39: 1259–1265.

61. Huard J, Yokoyama T, Pruchnic R et al. Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction. Gene Ther 2002; 9: 1617–1626.

62. Machluf M, Orsola A, Boorjian S et al. Microencapsulation of Leydig cells: a system for testosterone supplementation. Endocrinology 2003; 144: 4975–4979.

Labels
Paediatric urologist Urology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#