#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

MYC gene and its abnormalities with a focus on aggressive B-cell  lymphomas


Authors: M. Vatolíková;  H. Urbánková
Authors‘ workplace: Hemato-onkologická klinika LF UP a FN Olomouc
Published in: Transfuze Hematol. dnes,31, 2025, No. Ahead of Print, p. 1-8.
Category: Review/Educational Papers
doi: https://doi.org/10.48095/cctahd2025prolekare.cz18

Overview

 The MYC gene encodes the Myc protein, which is one of the most important transcription factors. It regulates a wide spectrum of cellular functions, including proliferation, cellular differentiation, and apoptosis. Deregulation of the MYC gene occurs at various levels, and its overexpression is associated with a range of malignancies. Deregulation of the gene through chromosomal rearrangements is particularly characteristic of B-cell lymphomas and is usually accompanied by a more aggressive disease course, often with an unfavourable prognosis. B-cell lymphomas harbouring confirmed MYC gene rearrangements exhibit considerable variability in the breakpoints within the 8q24 locus. Various translocation partners are involved in these rearrangements, including both immunoglobulin (IG) genes and non-immunoglobulin (non-IG) genes. The involvement of IG genes as translocation partners of MYC is considered a negative prognostic factor. The prognosis of patients with MYC gene rearrangements is also significantly influenced by concurrent aberrations in other oncogenes. The presence or absence of rearrangements in the MYC, BCL2, and BCL6 genes, combined with morphological assessment, constitutes a defining criterion for the classification of aggressive B-cell lymphomas according to the 5th revised edition of the WHO Classification (2022). The most appropriate method for detecting these rearrangements is fluorescence in situ hybridisation (FISH), which can be performed on both fresh samples and formalin-fixed paraffin-embedded tissue sections. This review focuses on the physiological function of the MYC gene, mechanisms of its deregulation, types of chromosomal aberrations involving the MYC gene, and their role in the pathogenesis of malignancies, with an emphasis on B-cell lymphomas.

Keywords:

MYC gene – Burkitt lymphoma – diffuse large-cell B-lymphoma – high-grade B-cell lymphoma – fluorescence in situ hybridisation


Sources
  1. Zeller KI, Zhao XD, Lee CWH, et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Nat Acad Sci. 2006;103 : 17834–17839. doi:10.1073/pnas. 0604129103.
  2. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. SeminCancerBiol.2006;16 : 253–264.doi:10.1016/ j.semcancer.2006.07.014.
  3. Carabet L, Rennie P, Cherkasov A. Therapeutic inhibition of Myc in cancer. Structural bases and computer-aided drug discovery approaches. Int J Mol Sci. 2018;20 : 120. doi:10.3390/ijms20010120.
  4. Blackwell TK, Huang J, Ma A, et al. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol. 1993;13 : 5216–5224. doi:10.1128/MCB.13.9.5216 .
  5. Nie Z, Hu G, Wei G, et al. C-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151 : 68–79. doi:10.1016/j.cell.2012.08.033.
  6. Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol. 2021;14 : 121. doi:10.1186/s13045-021-01111-4.
  7. Thomas LR, Tansey WP. Proteolytic con -⁠ trol of the oncoprotein transcription factor Myc. Adv Cancer Res. 2011;110 : 77–106. doi:10.1016/B978-0-12-386469-7.00004-9.
  8. Chisholm KM, Bangs CD, Bacchi CE, Kirsch HM, Cherry A, Natkunam Y. Expression profiles of MYC protein and MYC gene rearrangement in lymphomas. Am J Surg Pathol. 2015;39 : 294–303. doi:10.1097/PAS.0000000000000365.
  9. Wilson A, Murphy MJ, Oskarsson T, et al. C-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Develop. 2004;18 : 2747–2763. doi:10.1101/gad.313104.
  10. Evan GI, CHristophorou M, Lawlor EA, et al. Oncogene-dependent tumor suppression: using the dark side of the force for cancer therapy. Cold Spring Harb Symp Quant Biol. 2005;70 : 263–273. doi:10.1101/sqb.2005.70.054.
  11. Murphy DJ, Junttila MR, Pouyet L, et al. Distinct thresholds govern Myc‘s biological output in vivo. Cancer Cell. 2008;14 : 447 –⁠ 457. doi:10.1016/j.ccr.2008.10.018.
  12. Kalkat M, De Melo J, Hickman K, et al. MYC deregulation in primary human cancers. Genes. 2017;8 : 151. doi:10.3390/genes8060151.
  13. Hayward WS, Neel BG, Astrin SM. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature. 1981;290 : 475–480. doi:10.1038/290475a0.
  14. Payne GS, Bishop JM, Varmus HE. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature. 1982;295 : 209–214. doi:10.1038/295209a0.
  15. Robinson HL, Gagnon GC. Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas. J Virol. 1986;57 : 28–36. doi:10.1128/jvi.57.1.28-36.198.
  16. Peter M, Rosty C, Couturier J, Radvanyi F, Teshima H, Sastre-Garau X. MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene. 2006;25 : 5985 –⁠ 5993. doi:10.1038/ sj.onc.120 9625.
  17. Schaub FX, Dhankani V, Berger AC, et al. Pan-cancer alterations of the MYC oncogene and its proximal network across the cancer genome atlas. Cell Systems. 2018;6 : 282 –⁠ 300. doi:10.1016/j.cels.2018.03.003.
  18. Collinge BJ, Ben-Neriah S, Chong LC, et al. ImpactofMYCandBCL2structuralvariantsintumors of DLBCL morphology and mechanisms of false-negative MYC IHC. Blood. 2021;137 : 2196–2208. doi:10.1182/blood.2020007193.
  19. Valera A, Lopez-Guillermo A, Cardesa-Salzmann T, et al. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013;98 : 1554–1562. doi:10.3324/haematol.2013.086173.
  20. Jin X, Li H, Zhang D, et al. Myc rearrangement redefines the stratification of high‐risk multiple myeloma. Cancer Med. 2024;13:e7194. doi: 10.1002/cam4.7194.
  21. Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114 : 3533 –⁠ 3537. doi:10.1182/blood-2009-05-220095.
  22. LiY, Hu S,Wang SA, et al.The clinical significance of 8q24/MYC rearrangement in chronic lymphocytic leukemia. Modern Pathol. 2016;29 : 444–451. doi:10.1038/modpathol.2016.35.
  23. Li Q, Pan S, Xie T, Liu H. MYC in T-cell acute lymphoblastic leukemia: functional implications and targeted strategies. Blood Sci. 2021;3 : 65–70. doi:10.1097/BS9.0000000000000073.
  24. Chong LC, Ben-Neriah S, Slack GW, et al. High-resolution architecture and partner genes of MYC rearrangements in lymphoma with DLBCL morphology. Blood Adv. 2018;2 : 2755 –⁠ 2765. doi:10.1182/bloodadvances.2018023572.
  25. Ye X, Ren W, Liu D, et al. Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas. J Exp Med. 2021;218(2):e20200573. doi: 10.1084/jem.20200573.
  26. Muñoz-Mármol AM, Sanz C, Tapia G, et al. MYC status determination in aggressive B ‐⁠ cell lymphoma FISH probe selection: the impact of FISH probe selection. Histopathol. 2013;63 : 418–424. doi:10.1111/his.12178.
  27. Bertrand P, Bastard C, Maingonnat C, et al. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia. 2007;21 : 515–523. doi:10.1038/sj.leu.2404529.
  28. Valera A, Epistolio S, Colomo L, et al. Definition of MYC genetic heteroclonality in diffuse large B-cell lymphoma with 8q24 rearrangement and its impact on protein expression. Modern Pathol. 2016;29 : 844–853. doi:10.1038/modpathol.2016.71.
  29. Hilton LK, Collinge B, Ben-Neriah S, et al. Motive and opportunity: MYC rearrangements in high-grade B-cell lymphoma with MYC and BCL2 rearrangements (an LLMPP study). Blood. 2024;144 : 525–540. doi:10.1182/blood.2024024251.
  30. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Nat Acad Sci. 1982;79 : 7824 –⁠ 7827. doi:10.1073/pnas.79.24.7824.
  31. Molyneux EM, Rochford R, Griffin B, et al. Burkitt’s lymphoma. Lancet. 2012;379 : 1234–1244. doi:10.1016/S0140-6736(11)61177-X.
  32. Rosenwald A, Bens S, Advani R, et al. Prognostic significance of MYC rearrangement and translocation partner in diffuse large B-cell lymphoma: a study by the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol. 2019;37 : 3359 –⁠ 3368. doi:10.1200/ JCO.19. 00743.
  33. Copie-Bergman C, Cuillière-Dartigues P, Baia M, et al. MYC-IG rearrangements are negative predictors of survival in DLBCL patients treated with immunochemotherapy: a GELA/LYSA study. Blood. 2015;126 : 2466–2474. doi:10.1182/blood-2015-05-647602.
  34. Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36 : 1720–1748. doi:10.1038/s41375-022-01620-2.
  35. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403 : 503–511. doi:10.1038/35000501.
  36. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. New Engl J Med. 2008;359 : 2313–2323. doi:10.1056/NEJMoa0802885.
  37. Scott DW, King RL, Staiger AM, et al. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood. 2018;131 : 2060–2064. doi:10.1182/blood-2017-12-820605.
  38. Rennoll S. Regulation of MYC gene expression by aberrant Wnt/ b-catenin signaling in colorectal cancer. World J Biol Chem. 2015;6 : 290 –⁠ 300. doi:10.4331/ wjbc.v6. i4.290.
  39. Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. C-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/ lymphoma. Genes Develop. 2006;20 : 2096–2109. doi:10.1101/gad.1450406.
  40. Toribio ML, González-García S. Notch partners in the long journey of T-ALL pathogenesis. Int J Mol Sci. 2023;24 : 1383. doi:10.3390/ijms2402 1383.
  41. Xie S, Lin H, Sun T, Arlinghaus RB. Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene. 2002;21 : 7137 –⁠ 7146. doi:10.1038/ sj. onc.1205942.
  42. Dutta P, Willis XL. Role of the JAK-STAT signalling pathway in cancer. In: eLS. John Wiley & Sons, 2013. doi:10.1002/ 9780470015902. a0025214.
  43. Welcker M, Orian A, Jin J, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Nat Acad Sci. 2004;101 : 9085–9090. doi:10.1073/pnas.0402770101.
  44. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Develop. 2000;14 : 2501 –⁠ 2514. doi:10.1101/gad.836800.
  45. Tseng YY, Moriarity BS, Gong W, et al. PVT1 dependence in cancer with MYC copy--number increase. Nature. 2014;512 : 82 –⁠ 86. doi:10.1038/nature13311.
  46. Ulz P, Heitzer E, Speicher MR. Co-occurrence of MYC amplification and TP53 mutations in human cancer. Nature Gen. 2016;48 : 104–106. doi:10.1038/ng.3468.
  47. RiedellPA,SmithSM.Doublehitanddoubleex-pressors in lymphoma: definition and treatment. Cancer.  2018;124 : 4622 –⁠ 4632. doi:10.1002/ cncr.31646.
  48. Meriranta L, Pasanen A, Alkodsi A, Haukka J, Karjalainen-Lindsberg M-L, Leppä S. Molecular background delineates outcome of double protein expressor diffuse large B-cell lymphoma. Blood Adv. 2020;4 : 3742 –⁠ 3753. doi:10.1182/bloodadvances.2020001727.
  49. Green TM, Young KH, Visco C, et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30 : 3460–3467. doi:10.1200/JCO.2011.41.4342.
  50. Staiger AM, Ziepert M, Horn H, et al. Clinical impact of the cell-of-origin classification and the MYC / BCL2 dual expresser status in diffuse large B-cell lymphoma treated within prospective clinical trials of the German High-Grade Non-Hodgkin‘s Lymphoma Study Group. J Clin Oncol. 2017;35 : 2515–2526. doi:10.1200/JCO.2016.70.3660.
  51. Xu-Monette ZY, Deng Q, Manyam GC, et al. Clinical and biologic significance of MYC genetic mutations in de novo diffuse large B-cell lymphoma. Clin Cancer Res. 2016;22 : 3593–3605. doi:10.1158/1078-0432.CCR-15-2296.
  52. Kim H, Kim H-J, Kim S-H. Diagnostic approach for double-hit and triple-hit lymphoma based on immunophenotypic and cytogenetic characteristics of bone marrow specimens. Ann Lab Med. 2020;40 : 361–369. doi:10.3343/alm.2020.40.5.361.
  53. Tang Z, Gu J, Tang G, Medeiros LJ. Quality assurance/quality control of fluorescence in situ hybridization tests in hematologic malignancies. OBM Genetics. 2018;2 : 038. doi:10.21926/obm. genet.1804038.
  54. Sugita S, Hasegawa T. Practical use and utility of fluorescence in situ hybridization in the pathological diagnosis of soft tissue and bone tumors. J Orth Sci. 2017;22 : 601 –⁠ 612. doi:10.1016/j.jos.2017.02.004.
Labels
Haematology Internal medicine Clinical oncology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#