#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Study of acute myeloid leukaemia clonality in mouse model


Authors: Z. Kosařová 1,2;  M. Čulen 1,2,3;  I. Ježíšková 2;  A. Folta 2;  D. Dvořáková 1,2;  L. Semerád 1,2;  Z. Šustková 1,2;  J. Mayer 1,2,3;  Z. Ráčil 1,2,3
Authors‘ workplace: Lékařská fakulta, Masarykova univerzita, Brno 1;  Interní hematologická a onkologická klinika, Fakultní nemocnice Brno 2;  CEITEC – Středoevropský technologický institut, Masarykova univerzita, Brno 3
Published in: Transfuze Hematol. dnes,25, 2019, No. 2, p. 147-152.
Category: Review/Educational Papers

Overview

In the last few years, next generation sequencing has enabled detailed monitoring of the clonal composition and development of malignant diseases. Mutational screening in acute myeloid leukaemia patients has helped to describe the clonal composition and evolution of this disease. Xenotransplantation studies using immunodeficient mice and primary patient derived cells that enable the investigation of clonal changes under artificial conditions have also made a significant contribution. The clonal selection in mice is driven by the inherent proliferation capacity of individual (sub)clones. The use of mice with human cytokine expression or implanted humanized tissue has also demonstrated the critical effect of microenvironment that appears crucial for engraftment of acute myeloid leukaemia with favourable prognosis, e.g. RUNX1-RUNX1T1, CBFB-MYH11, mutated NPM1 without FLT3-ITD, biallelic mutated CEBPA. This review aims to present the current options for simulation of acute myeloid leukaemia in vivo and to summarize the most important data on clonal composition and pathogenesis of this disease obtained from xenotransplantation studies.

Keywords:

acute myeloid leukaemia – clonality – xenograft – NSG mouse


Sources

1. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129:424–447.

2. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013;368:2059–2074.

3. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 2016;7: ncomms12484.

4. Anderson K, Lutz C, van Delft FW, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011;469:356–361.

5. Sallman DA, Padron E. Integrating mutation variant allele frequency into clinical practice in myeloid malignancies. Hematol Oncol Stem Cell Ther 2016;9:89–95.

6. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classifica-tion and prognosis in acute myeloid leukemia. N Engl J Med 2016;374: 2209–2221.

7. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999;93:3074–3080.

8. Klco JM, Spencer DH, Miller CA, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014;25:379–392.

9. Rothenberg-Thurley M, Amler S, Goerlich D, et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia 2018;32:1598–1608.

10. Corces-Zimmerman MR, Hong W-J, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci 2014;111:2548–2553.

11. Morita K, Kantarjian HM, Wang F, et al. Clearance of somatic muta-tions at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol 2018;36:1788–1797.

12. Thol F, Klesse S, Köhler L, et al. Acute myeloid leukemia derived from lympho-myeloid clonal hematopoiesis. Leukemia 2017;31:1286–1295.

13. Čulen M, Kosařová Z, Ježíšková I, et al. Sekvenování nové generace u akutní myeloidní leukemie: nový pohled na patogenezi a vývoj leukemických klonů. Transfuze Hematol dnes 2017;23:185–191.

14. Sanchez PV, Perry RL, Sarry JE, et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia 2009;23:2109–2117.

15. Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966;8:295–309.

16. Ziegler HW, Frizzera G, Bach FH. Successful transplantation of a human leukemia cell line into nude mice: conditions optimizing graft acceptance. J Natl Cancer Inst 1982;68:15–18.

17. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992;68:869–877.

18. Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992;68:855–867.

19. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983;301:527–530.

20. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992;255:1137–1141.

21. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988;241:1632–1639.

22. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol Baltim Md 1995;154:180–191.

23. Lumkul R, Gorin NC, Malehorn MT, et al. Human AML cells in NOD/SCID mice: Engraftment potential and gene expression. Leukemia 2002;16:1818–1826.

24. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005;174:6477–6489.

25. Rongvaux A, Takizawa H, Strowig T, et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 2013;31:635–674.

26. Wunderlich M, Chou F-S, Link K, et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010;24:1785–1788.

27. Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014;32:364–372.

28. Groen RWJ, Noort WA, Raymakers RA, et al. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 2012;120:e9–e16.

29. Malaisé M, Neumeier M, Botteron C, et al. Stable and reproducible engraftment of primary adult and pediatric acute myeloid leukemia in NSG mice. Leukemia 2011;25:1635–1639.

30. Hirsch P, Zhang Y, Tang R, et al. Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia. Nat Commun 2016;7:ncomms12475.

31. Vick B, Rothenberg M, Sandhöfer N, et al. An advanced preclinical mouse model for acute myeloid leukemia using patients’ cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS ONE 2015;10:e0120925.

32. Rothenberg-Thurley M, Vick B, Schneider S, et al. Genetic profiling by targeted, deep resequencing confirms that a murine xenograft model of acute myeloid leukemia (AML) recapitulates the mutational landscape of the human disease and provides evidence for clonal heterogeneity and clonal evolution. Blood 2013;122(21):49.

33. Wang K, Sanchez-Martin M, Wang X, et al. Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia 2017;31:151–158.

34. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007;25:1315–1321.

35. Quek L, Otto GW, Garnett C, et al. Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. J Exp Med 2016;213:1513–1535.

36. Sandén C, Saba K, Orsmark-Pietras C, et al. Mutational and clonal dynamics in patient-derived xenografts of acute myeloid leukemia. Blood 2016;128(22):1154.

37. Buscarlet M, Provost S, Zada YF, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 2017;130:753–762.

38. Antonelli A, Noort WA, Jaques J, et al. Establishing human leukemia xenograft mouse models by implanting human bone marrow-like scaffold-based niches. Blood 2016;128:2949–2959.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue 2

2019 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#