Development of vascular substitutes for low-flow peripheral bypass grafting – a review

Authors: P. Mitáš 1;  M. Špaček 1;  T. Grus 1;  H. Chlup 2;  M. Mlček 3;  L. Lambert 4;  M. Krajíček 1;  J. Lindner 1
Authors‘ workplace: II. chirurgická klinika kardiovaskulární chirurgie, Všeobecná fakultní nemocnice a 1. lékařská fakulta Univerzity, Karlovy, Praha 1;  Odbor biomechaniky, Ústav mechaniky, biomechaniky a mechatroniky, Fakulta strojní, ČVUT, Praha 2;  Fyziologický ústav, 1. lékařská fakulta Univerzity Karlovy, Praha 3;  Radiodiagnostická klinika, Všeobecná fakultní nemocnice a 1. lékařská fakulta Univerzity Karlovy, Praha 4
Published in: Rozhl. Chir., 2019, roč. 98, č. 6, s. 233-238.
Category: Review


The development of a low-flow vascular prosthesis is a very topical issue. The authors present a pathway for the development of a prosthesis with optimal properties based on the idea of mimicking the characteristics of a biological model (saphenous vein graft) and programming these properties in the model of the prosthetic substitute. The vascular prosthesis presented consists of three layers – a non-absorbable scaffold representing vascular “media”, and two absorbable collagen layers – pseudointima and pseudoadventitia. The basic methods of physical testing are presented – the single axis stretch test and inflation-extension test, as well as other procedures that affect the final properties. These include collagen curing, antithrombotic treatment of the inner layer and the use of sterilization methods. The designed new graft was successfully implanted in an ovine model.


vascular substitutes for low-flow peripheral bypass grafting – testing

  1. Carrel A. Ultimate results of aortic transplantation J Exp Med. 1912;15: 389−92.

  2. Kunlin J. Venous grafts. J Int Chir. 1953;13:313−9.

  3. Blakemoore AH, Voorhees AB Jr. The use of tubes constructed from vinyon N cloth in bridging arterial defects; experimental and clinical. Ann Surg. 1954;140:324−34.

  4. Kakisis JD, Liapis ChD, Breuer Ch, et al. Artificial blood vessel: The Holy Grail of peripheral vascular surgery. J Vasc Surg. 2005;41:349−54. doi: 10.1016/j.jvs.2004.12.026.

  5. Kannan RY, Salacinski HJ, Butler PE, et al. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater. 2005;74:570−81. doi: 10.1002/jbm.b.30247

  6. Chlupáč J, Filová E, Bačáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58 (Suppl.2) S119−S139.

  7. Heyligers JMM, Arts CHP, Verhagen HJM, et al. Improving small-diameter vascular grafts: From the application of an endothelial cell lining to the construction of a tissue-engineered blood vessel. Ann Vasc Surg. 2005;19:448−56.doi. 10.1007/s10016-005-0026-0.

  8. Berglund JD, Mohseni MM, Nerem RM, et al. A biological hybrid model for collagen-based tissue engineered vascular constructs. Biomaterials 2003;24:1241–54.

  9. Grus T, Lambert L, Mlcek M, et al. In vivo evaluation of short-term performance of new three-layer collagen-based vascular graft designed for low-flow peripheral vascular reconstructions. Biomed Res Int. 2018. doi:10.1155/2018/3519596

  10. Veselý J, Chlup H, Krajíček M, et al. Mechanical properties of biological composite reinforced by polyester mesh. In Experimental Stress Analysis 2015. Czech Technical University in Prague 2015:466−8.

  11. Veselý J, Horný L, Chlup H, et al. Effect of polyvinyl alcohol concentration on the mechanical properties of collagen/polyvinyl alcohol blends. Applied Mechanics and Materials 2015;732:161−4. doi: 10.4028/

  12. Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regen Med. 2010;5:107.doi: 10.2217/rme.09.77

  13. Nerem RM. Tissue engineering a blood vessel substitute: The role of biomechanics. Yonsci Medical Journal 2000;41:735−9. doi:10.3349/ymj.2000.41.6.735.

  14. Martinez AW, Caves JM, Ravi S, et al. Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomater. 2014;10:26−33. doi: 10.1016/j.actbio.2013.08.029.

  15. Chaouat M, Le Visage C, Baille WE, et al. A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Adv Funct Mater. 2006;18:2855−61. doi:10.1002/adfm.200701261.

  16. Veselý J, Horný L, Chlup H, et al. Constitutive modeling of human saphenous veins at overloading pressures. J Mech Behav Biomed Mater. 2015;45:101−8. doi:10.1016/j.jmbbm.2015.01.023

  17. Špaček M, Chlup H, Mitáš P, et al. Three-layer collagen-based vascular graft designed for low-flow peripheral vascular reconstructions. J Appl Biomed. 2019, in press.

  18. Beran M, Drahorad J, Molik P, et al. Site-specific thrombolytic and anticoagulant biomaterials. Proceedings of AMN-7. Int J Nanotechnology 2017;14:31−7. doi.10.1504/IJNT.2017.082443.

  19. Fernandes EG1, de Queiroz AA, Abraham GA, et al. Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J Mater Sci Mater Med. 2006;17:105−11. doi: 10.1007/s10856-006-6813-5

  20. Sask KN. Antithrombogenic biomaterials: Surface modification with an sntithrombin-heparin covalent complex. Open access dissertations and theses 4-1-2012. McMaster University. DigitalCommons@McMaster

  21. Zhou Z, Meyerhoff ME. Preparation and characterization of polymeric coatings with combined nitric oxide release and immobilized active heparin. Biomaterials 2005;26:6506−17. doi: 10.1016/j.biomaterials.2005.04.046.

  22. Carpenter AW, Johnson JA, Schoenfisch MH. Nitric oxide-releasing silica nanoparticles with varied surface hydrophobicity. Colloids and Surfaces a: Physicochemical and Engineering Aspects. 2014;454: 144−51. doi: 10.1016/j.colsurfa.

  23. Kaibara M, Kawamoto Y, Yanagida S, et al. In vitro evaluation of antithrombogenicity of hybrid-type vascular vessel models based on analysis of the mechanism of blood coagulation. Biomaterials 1995;16:1229−34.

  24. Popowich Q, Jiang JA, Hrabie JE, et al. Nitric oxide and nanotechnology: A novel approach to inhibit neointimal hyperplasia. Journal of Vascular Surgery 2008;47:173−82. doi: 10.1016/j.jvs.2007.09.005.

  25. Innocente F, Mandracchia D, Pektok E, et al. Paclitaxel-eluting biodegradable synthetic vascular prostheses: a step towards reduction of neointima formation? Circulation 2009;120(11 Suppl):S37−45. doi: 10.1161/CIRCULATIONAHA.109.848242.

  26. Noah EM, Chen J, Jiao X, et al. Impact of sterilization on the porous design and cell behavior in collagen sponges prepared for tissue engineering. Biomaterials 2002;23:2855–61.

  27. Olde Damink LH, Dijkstra PJ, Van Luyn MJ, et al. Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen. Journal of Biomedical Materials Research 1995;29:149−55. doi: 10.1002/jbm.820290203.

  28. Cheung DT, Perelman N, Tong D, et al. The effect of gamma-irradiation on collagen molecules, isolated alphachains, and crosslinked native fibers. Journal of Biomedical Materials Research 1990;24:581−9. doi: 10.1002/jbm.820240505.

  29. Sarkar S, Schmitz-Rixen T, Hamilton G, et al. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput. 2007;45:327−36. doi:10.1007/s11517-007-0176-z

  30. Chan-Park MB, Shen JY, Cao Y, Xiong Y, et al. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. J Biomed Mater Res A. 2009;88:1104−21. doi:10.1002/jbm.a.32318.

  31. Nerem RM, Seliktar D. Vascular tissue engineering. Annu Rev Biomed Eng. 2001;3:225−43. doi:10.1146/annurev.bioeng.3.1.225.

  32. Sarkar S, Salacinskij HJ, Hamilton G, et al. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg. 2006;31:627−36. doi: 10.1016/j.ejvs.2006.01.006.

  33. Sarkar S, Burriesci G, Wojcik A, et al. Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer. Journal of Biomechanics 2009;42:722−30. doi: 10.1016/j.jbiomech.2009.01.003.

  34. Veselý J, Chlup H, Žitný R, et al. Effect of sterilization on mechanical properties of biological composite. ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering. June 2016.

Surgery Orthopaedics Trauma surgery
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account