#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Changes in pulmonary fibroblasts respiration in vitro after repeated short-term hyperoxic exposure


Authors: J. Dejmek 1,2;  M. Marková 2,3;  M. Kripnerová 4;  M. Čedíková 2,3;  Z. Tůma 2;  V. Babuška 5;  L. Bolek 1,2;  J. Kuncová 1,2,3
Authors‘ workplace: Ústav biofyziky, Lékařská fakulta v Plzni, Univerzita Karlova, Plzeň, vedoucí doc. MUDr. Jitka Kuncová, Ph. D. 1;  Biomedicínské centrum, Lékařská fakulta v Plzni, Univerzita Karlova, Plzeň, vědecký ředitel doc. MUDr. Milan Štengl, Ph. D. 2;  Ústav fyziologie, Lékařská fakulta v Plzni, Univerzita Karlova, Plzeň, vedoucí doc. MUDr. Milan Štengl, Ph. D. 3;  Ústav biologie, Lékařská fakulta v Plzni, Univerzita Karlova, Plzeň, vedoucí doc. RNDr. Martin Pešta, Ph. D. 4;  Ústav lékařské chemie a biochemie, Lékařská fakulta v Plzni, Univerzita Karlova, Plzeň, vedoucí prof. MUDr. Jaroslav Racek, DrSc. 5
Published in: Pracov. Lék., 70, 2018, No. 3-4, s. 130-135.
Category:

Overview

Study aims to evaluate effects of repeated exposure to HBO on mitochondrial respiration assessed by high-resolution respirometry (HRR), cell viability estimated by PrestoBlue® reaction, morphology analyzed by routine phase contrast and fluorescent microscopy, and superoxide dismutase (SOD) and citrate synthase (CS) activities using human lung fibroblasts. The cells were exposed to HBO (3 ATA) for 2 hours per day for 5 consecutive days. One day after the last exposure, HBO cells displayed significantly smaller area and perimeter, compromised viability and elevated SOD activity. No changes were detected in CS activity or quality of mitochondrial network. HRR revealed impaired mitochondrial oxygen consumption manifested by increased leak respiration, decreased activity of complex II and compromised ATP-related oxygen consumption when fatty acids were oxidized. Our findings document that in conditions mimicking chronic intermittent exposure to HBO, lung fibroblasts suffer from compromised mitochondrial respiration linked to complex II and impaired cellular growth in spite of increased antioxidant defense. Underlying mechanism of this HBO-induced mitochondrial dysfunction should be further explored.

Keywords:

hyperbaric hyperoxia – high resolution respirometry – human fetal lung fibroblasts – mitochondria – superoxide dismutase


Sources

1. Adebiyi, A., McNally, E. M., Jaggar, J. H. Sulfonylurea receptor-dependent and -independent pathways mediate vasodilation induced by ATP-sensitive K+ channel openers. Molecular Pharmacology, 2008, 74, p. 736–743.

2. Bosco, G., Casarotto, A., Nasole, E., Camporesi, E., Salvia, R., Giovinazzo, F., Zanini, S., Malleo, G., Di Tano, A., Rubini, A., Zanon, V., Mangar, D., Bassi, C. Preconditioning with Hyperbaric Oxygen in Pancreaticoduodenectomy: a Randomized Double-blind Pilot Study. Anticancer Res., 2014, 34, p. 2899–2906.

3. Brem, H., Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. The Journal of Clinical Investigation, 2007, 117, p. 1219–1222.

4. Dröse, S., Bleier, L., Brandt, U. A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production. Molecular Pharmacology, 2011, 79, p. 814–822.

5. Fukai, T., Ushio-Fukai, M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxidants & Redox Signaling, 2011, 15, p. 1583–1606.

6. Huang, C. C., Ho, C. H., Chen, Y.C., Lin, H. J., Hsu, C. C., Wang, J. J., Bin Su, S., Guo, H.R. Hyperbaric Oxygen Therapy Is Associated With Lower Short- and Long-Term Mortality in Patients With Carbon Monoxide Poisoning. Chest, 2017, 152, p. 943–953.

7. Chicco, A., Gutman, R., Lombardo, Y. B. Biochemical abnormalities in the heart of rats fed a sucrose-rich diet: is the low activity of the pyruvate dehydrogenase complex a result of increased fatty acid oxidation? Metabolism: Clinical and Experimental, 1991, 40, p. 15–21.

8. Jastroch, M., Divakaruni, A.S., Mookerjee, S., Treberg, J. R., Brand, M. D. Mitochondrial proton and electron leaks. Essays In Biochemistry, 2010, 47, p. 53–67.

9. Jodeiri Farshbaf, M., Kiani-Esfahani, A. Succinate dehydrogenase: Prospect for neurodegenerative diseases. Mitochondrion, 2017.

10. Kelley, D. E., Mokan, M., Simoneau, J. A., Mandarino, L. J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. The Journal of Clinical Investigation. 1993, 92, p. 91–98.

11. Moon, K. C., Han, S. K., Lee, Y. N., Jeong, S. H., , Dhong, E. S., Kim, W. K. Effect of normobaric hyperoxic therapy on tissue oxygenation in diabetic feet: a pilot study. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2014, 67, p. 1580–1586.

12. Nulton-Persson, A.C., Szweda, L. I. Modulation of Mitochondrial Function by Hydrogen Peroxide. Journal of Biological Chemistry, 2001, 276, p. 23357–23361.

13. Pesta, D., Gnaiger, E. High-Resolution Respirometry: OXPHOS Protocols for Human Cells and Permeabilized Fibers from Small Biopsies of Human Muscle. Methods in molecular biology, 2012, 810, p. 25–58.

14. Pfleger, J., He, M., Abdellatif, M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death & Disease, 2015, 6, p. e1835–e1835.

15. Scholz, R., Olson, M. S., Schwab, A. J., Schwabe, U., Noell, C., Braun, W. The Effect of Fatty Acids on the Regulation of Pyruvate Dehydrogenase in Perfused Rat Liver. Eur. J. Biochem, 1978, 86, p. 519–530.

16. Schreml, S., Szeimies, R. M., Prantl, L., Karrer, S., Landthaler, M., Babilas, P. Oxygen in acute and chronic wound healing. British Journal of Dermatology, 2010, 163, p. 257–268.

17. Simsek, K., Ay, H., Topal, T., Ozler, M., Uysal, B., Ucar, E., Acikel, Ch., Yesilyurt, O., Korkmaz, A., Oter, S., Yildiz, S. Long-term exposure to repetitive hyperbaric oxygen results in cumulative oxidative stress in rat lung tissue. Inhalation Toxicology, 2011, 23, p. 166–172.

18. Wojtovich, A. P., Brookes, P. S. The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Research in Cardiology, 2009, 104, p. 121–129.

19. Brand, Martin D., Lee Feng Chien, Edward K. Ainscow, David F. S. Rolfe, Richard K. Porter The causes and functions of mitochondrial proton leak [online]. 30. srpen 1994. [vid. 2018-05-06]. ISBN 0005-2728. Dostupné z: doi:10.1016/0005-2728(94)90099-X.

Labels
Hygiene and epidemiology Hyperbaric medicine Occupational medicine

Article was published in

Occupational Medicine

Issue 3-4

2018 Issue 3-4

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#