#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mitochondria – from origin to current therapies


Authors: Vít Smejkal 1;  Ilona Hromadníková 2;  Anežka Palmová 1;  Jana Šimková 1;  Radek Klubal 1
Authors‘ workplace: Medicínské centrum Praha, s. r. o. 1;  Oddělení molekulární biologie a patologie buňky 3. LF UK v Praze 2
Published in: Čas. Lék. čes. 2021; 160: 332-339
Category: Review Article

Overview

Mitochondria are part of almost all eukaryotic cells. Their function is to produce and release energy for the needs of the cell, provide beta-oxidation, participate in the synthesis of steroids, serve for heat production through non-shaking thermoregulation or for calcium ions storage. They are also involved in the cell apoptosis and membrane potential regulation.

Mitochondrial energy production affects cell proliferation, changes in gene expression, and the formation of reactive oxygen species (ROS).

Mitochondrial DNA (mtDNA) is located in the matrix of mitochondria and is inherited exclusively maternally. Hence it is a suitable tool for studying the evolution of the human population, for elucidating evolutionary relationships, and for mapping the migration throughout history.

Gene mutations in nuclear DNA or mtDNA negatively impact the mitochondrial activity. As a result, various mitochondrial diseases arise, which are characterized by a specific type of heredity and various clinical manifestations. Their origin has most often been explained by the theory of mitochondrial aging.

The quality of mitochondria is negatively affected, among other, by environmental effects, mainly radiation. Most of all they benefit from healthy lifestyle including diets rich in vitamins, phytonutrients, and antioxidants.

Keywords:

Mutation – Mitochondrial DNA – Transplantation – Mitochondrial diseases – Regeneration – organelle – cellular energy – ATP – haplotype


Sources

1. Ješina P. Mitochondriální nemoci způsobené genetickými poruchami F1Fo-ATP syntázy. Habilitační práce 2017. Dostupné na: dspace.cuni.cz/bitstream/handle/20.500.11956/111557/Jesina_habilitacniprace_2017.pdf?sequence=1&isAllowed=y

2. Martin WF, Neukirchen S, Zimorski V et al. Energy for two: New archaeal lineages and the origin of mitochondria. Bioessays 2016; 38(9): 850–856.

3. Karnkowska A, Vacek V, Zubáčová Z et al. A eukaryote without a mitochondrial organelle. Curr Biol 2016; 26(10): 1274–1284.

4. Zhang Z-W, Cheng J, Xu F et al. Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life 2011; 63(7): 560–565.

5. Costello MJ, Brennan LA, Basu S et al. Autophagy and mitophagy participate in ocular lens organelle degradation. Exp Eye Res 2013; 116: 141–150.

6. Picard M, Taivassalo T, Gouspillou G, Hepple RT. Mitochondria: Isolation, structure and function. J Physiol 2011; 589(18): 4413–4421.

7. Šeda O, Liška F, Šedová L. Aktuální genetika – multimediální učebnice lékařské biologie, genetiky a genomiky. Praha: Ústav biologie a lékařské genetiky 1. LF UK a VFN, 2005–2006.

8. Holt IJ, Spinazzola A. Mechanisms of onset and accumulation of mtDNA mutations. In: Gasparre G, Porcelli AM (eds.): The Human Mitochondrial Genome. Cambridge: Academic Press 2020: 195–219.

9. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012; 337(6098): 1062–1065.

10. Fritsch ES, Chabbert CD, Klaus B, Steinmetz LM. A genome-wide map of mitochondrial DNA recombination in yeast. Genetics 2014; 198(2): 755–771.

11. Kivisild T. Maternal ancestry and population history from whole mitochondrial genomes. Investig Genet 2015; 6: 3.

12. Tranah GJ, Manini TM, Lohman KK et al. Mitochondrial DNA variation in human metabolic rate and energy expenditure. Mitochondrion 2011; 11(6): 855–861.

13. Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol. 2010; 5: 297–348.

14. Kenney MC, Chwa M, Atilano SR et al. Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: Implications for age-related macular degeneration. PLoS One 2013; 8(1): e54339.

15. Wallace DC, Lott M, Procaccio V. Mitochondrial medicine: The mitochondrial biology and genetics of metabolic and degenerative diseases, cancer, and aging. In: Rimoin D, Pyeritz R, Korf B (eds.): Emery and Rimoin’s Principles and Practice of Medical Genetics. Cambridge: Academic Press 2013: 1–153.

16. Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S. Mitochondria, OxPhos, and neurodegeneration: Cells are not just running out of gas. J Clin Invest 2019; 129(1): 34–45.

17. Tsuda M, Fukushima A, Matsumoto J et al. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure. J Cachexia Sarcopenia Muscle 2018; 9(5): 844–859.

18. Stefano GB, Bjenning C, Wang F et al. Mitochondrial heteroplasmy. Adv Exp Med Biol 2017; 982: 577–594.

19. Szczepanowska K, Trifunovic A. Mitochondrial DNA mutations and aging. In: Gasparre G, Porcelli AM (eds.): The Human Mitochondrial Genome. Cambridge: Academic Press 2020: 221–242.

20. Quadalti C, Garone C. MtDNA maintenance: Disease and therapy. In: Gasparre G, Porcelli AM (eds.): The human mitochondrial genome. Cambridge: Academic Press 2020: 411–442.

21. Lanza IR, Nair KS. Mitochondrial function as a determinant of life span. Pflugers Arch 2010; 459(2): 277–289.

22. Hwang AB, Jeong D-E, Lee S-J. Mitochondria and organismal longevity. Curr Genomics 2012; 13(7): 519–532.

23. Bo H, Zhang Y, Ji LL. Redefining the role of mitochondria in exercise: A dynamic remodeling. Ann N Y Acad Sci 2010; 1201(1): 121–128.

24. Santini SJ, Cordone V, Falone S et al. Role of mitochondria in the oxidative stress induced by electromagnetic fields: Focus on reproductive systems. Oxid Med Cell Longev 2018; 2018: 5076271.

25. Gorini S, De Angelis A, Berrino L et al. Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev 2018; 2018: 7582730.

26. Kober KM, Olshen A, Conley YP et al. Expression of mitochondrial dysfunction-related genes and pathways in paclitaxel-induced peripheral neuropathy in breast cancer survivors. Mol Pain 2018; 14: 1744806918816462.

27. Fetterman JL, Sammy MJ, Ballinger SW. Mitochondrial toxicity of tobacco smoke and air pollution. Toxicology 2017; 391: 18–33.

28. Dai D-F, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res 2012; 110(8): 1109–1124.

29. Niyazov DM, Kahler SG, Frye RE. Primary mitochondrial disease and secondary mitochondrial dysfunction: Importance of distinction for diagnosis and treatment. Mol Syndromol 2016; 7(3): 122–137.

30. Chung N, Park J, Lim K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. J Exerc Nutrition Biochem 2017; 21(2): 39–47.

31. Viscomi C, Zeviani M. Strategies for fighting mitochondrial diseases. J Intern Med 2020; 287(6): 665–684.

32. Dorn GW. Gone fission: diverse consequences of cardiac Drp1 deficiency. Circ Res 2015; 116(2): 225–228.

33. Marchbank NJ, Craig JE, Leek JP et al. Deletion of the OPA1 gene in a dominant optic atrophy family: Evidence that haploinsufficiency is the cause of disease. J Med Genet 2002; 39(8): 47–47.

34. Zhang M, Bener MB, Jiang Z et al. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death Discov 2019; 10(8): 1–15.

35. Varanita T, Soriano ME, Romanello V et al. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 2015; 21(6): 834–844.

36. Civiletto G, Varanita T, Cerutti R et al. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 2015; 21(6): 845–854.

37. Hyslop LA, Blakeley P, Craven L et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 2016; 534(7607): 383–386.

38. Roushandeh AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology 2019; 71(2): 647–663.

39. Ali Pour P, Kenney MC, Kheradvar A. Bioenergetics consequences of mitochondrial transplantation in cardiomyocytes. J Am Heart Assoc 2020; 9(7): e014501.

40. Shin B, Cowan DB, Emani SM et al. Mitochondrial transplantation in myocardial ischemia and reperfusion injury. Adv Exp Med Biol 2017; 982: 595–619.

41. Lichscheidt ED, Jespersen NR, Nielsen BR et al. Mitochondrial function is impaired in heart transplant patients with cardiac allograft vasculopathy. J Heart Lung Transplant 2020; 39(4): S89.

42. Nascimento-dos-Santos G, de-Souza-Ferreira E, Lani R et al. Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina. Biochim Biophys Acta Mol Basis Dis 2020; 1866(5): 165686.

43. Sarmah D, Kaur H, Saraf J et al. Getting closer to an effective intervention of ischemic stroke: The big promise of stem cell. Transl Stroke Res 2018; 9(4): 356–374.

44. Hepokoski M. Mitochondrial transplantation: Respiration rescue in respiratory failure. Am J Physiol Lung Cell Mol Physiol 2020; 318(1): L76–L77.

45. Chiang JL, Shukla P, Pagidas K et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev 2020; 63: 101168.

46. Benton MC. Mitochondrial genome variation and metabolic traits in a Maori community. 2009. Dostupné na: www.researchgate.net/publication/43193294_Mitochondrial_Genome_Variation_and_Metabolic_Traits_in_a_Maori_Community

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management

Article was published in

Journal of Czech Physicians

Issue 7–8

2021 Issue 7–8

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#