#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Obstructive sleep apnea and hypertension: the role of gut microbiome


Authors: Pavel Šiarnik 1;  Katarína Klobučníková 1;  Imrich Mucska 2;  Alžbeta Hlucháňová 3;  Oto Hanus 4;  Peter Turčáni 1;  Branislav Kollár 1
Authors‘ workplace: I. neurologická klinika Lekárskej fakulty Univerzity Komenského a Univerzitnej nemocnice Bratislava 1;  Ambulancia pre spánkové poruchy dýchania, Univerzitná nemocnica Bratislava 2;  Neurologické oddelenie, Nemocnica sv. Cyrila a Metoda, Univerzitná nemocnica Bratislava 3;  Neurologická klinika, Ústredná vojenská nemocnica SNP Ružomberok 4
Published in: Vnitř Lék 2020; 66(7): 415-419
Category:

Overview

Obstructive sleep apnea is common disorder affecting approximately one quarter of the common population. Prevalence is even higher in a population with increased vascular risk. Obstructive sleep apnea is a significant risk factor for hypertension, with approximately 50% of obstructive sleep apnea patients suffering hypertension. While the relationship between sleep apnea and hypertension has been firmly established, mechanisms linking these disorders are still poorly understood. Importance of sympathetic nervous system and renin-angiotensin-aldosterone system hyperactivity as well as endothelial dysfunction is suspected. There is increasing evidence supporting gut dysbiosis as one of the underlying mechanisms. Current article describes possible mechanisms linking obstructive sleep apnea with the development of hypertension. The role of gut microbiota in this process is discussed more closely. 

Keywords:

gut microbiome – hypertension – obstructive sleep apnea


Sources

1. Peppard PE, Young T, Barnet JH, et al. Increased prevalence of sleep- disordered breathing in adults. Am J Epidemiol. 2013; 177(9): 1006–1014.

2. Goldberger JJ, Cain ME, Hohnloser SH, et al. American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society Scientific Statement on Noninvasive Risk Stratification Techniques for Identifying Patients at Risk for Sudden Cardiac Death. Circulation 2008; 118(14): 1497–1518.

3. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J 2018; 39(33): 3021–3104.

4. Burt VL, Cutler JA, Higgins M, et al. Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension 1995; 26(1): 60–69.

5. Parati G, Lombardi C, Hedner J, et al. Recommendations for the management of patients with obstructive sleep apnoea and hypertension. Eur Respir J 2013; 41(3): 523–538.

6. Mashaqi S,Gozal D. Obstructive Sleep Apnea and Systemic Hypertension: Gut Dysbiosis as the Mediator? J Clin Sleep Med 2019; 15(10): 1517–1527.

7. Durgan DJ. Obstructive Sleep Apnea -Induced Hypertension: Role of the Gut Microbiota. Curr Hypertens Rep 2017; 19(4): 35.

8. Peppard PE, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000; 342(19): 1378–1384.

9. Walia HK, Li H, Rueschman M, et al. Association of severe obstructive sleep apnea and elevated blood pressure despite antihypertensive medication use. J Clin Sleep Med 2014; 10(8): 835–843.

10. Chamberlin NL. Brain circuitry mediating arousal from obstructive sleep apnea. Curr Opin Neurobiol. 2013; 23(5): 774–779.

11. Ott SR, Korostovtseva L, Schmidt M, et al. Sleep- disordered breathing: clinical features, pathophysiology and diagnosis. Swiss Med Wkly. 2017; 147: w14436.

12. Ahmad M, Makati D, Akbar S. Review of and Updates on Hypertension in Obstructive Sleep Apnea. Int J Hypertens 2017; 2017: 1848375.

13. Imadojemu VA, Mawji Z, Kunselman A, et al. Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy. CHEST Journal 2007; 131(5): 1406–1413.

14. Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. Journal of Clinical Investigation 1991; 87(6): 1953.

15. Prabhakar NR, Kumar GK.Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respiratory physiology & neurobiology 2010; 174(1): 156–161.

16. Monahan KD, Leuenberger UA, Ray CA.Effect of repetitive hypoxic apnoeas on baroreflex function in humans. The Journal of physiology 2006; 574(2): 605–613.

17. Narkiewicz K, van de Borne PJ, Montano N, et al. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation 1998; 97(10): 943–935.

18. Jin ZN, Wei YX. Meta- analysis of effects of obstructive sleep apnea on the renin-angiotensin -aldosterone system. J Geriatr Cardiol 2016; 13(4): 333–343.

19. Šiarnik P, Krížová L, Kollár B, et al. Syndróm obštrukčného spánkového apnoe a endoteliálna dysfunkcia ako rizikové faktory cerebrovaskulárnych ochorení. Neurológia 2011; 6(2): 81–85.

20. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004; 15(8): 1983–1992.

21. Blanco M, Rodriguez -Yanez M, Sobrino T, et al. Platelets, inflammation, and atherothrombotic neurovascular disease: the role of endothelial dysfunction. Cerebrovasc Dis 2005; 20 (2): 32–39.

22. Lavie L. Obstructive sleep apnoea syndrome--an oxidative stress disorder. Sleep Med Rev 2003; 7(1): 35–51.

23. Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 2005; 112(17): 2660–2667.

24. Kamada N, Seo S- U, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology 2013; 13(5): 321–335.

25. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59–65.

26. Farre N, Farre R, Gozal D. Sleep Apnea Morbidity: A Consequence of Microbial- Immune Cross -Talk? Chest 2018; 154(4): 754–759.

27. Moreno- Indias I, Torres M, Montserrat JM, et al. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea. Eur Respir J 2015; 45(4): 1055–1065.

28. Berni Canani R, Di Costanzo M, Leone L.The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics 2012; 4(1): 4.

29. Wu J, Sun X, Wu Q, et al. Disrupted intestinal structure in a rat model of intermittent hypoxia. Mol Med Rep 2016; 13(5): 4407–4013.

30. Poroyko VA, Carreras A, Khalyfa A, et al. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Sci Rep 2016; 6: 35405.

31. Lyte M, Vulchanova L, Brown Dr. Stress at the intestinal surface: catecholamines and mucosa -bacteria interactions. Cell Tissue Res 2011; 343(1): 23–32.

32. Natarajan N, Hori D, Flavahan S, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein- coupled receptor 41. Physiol Genomics 2016; 48(11): 826–834.

33. Agita A, Alsagaff MT. Inflammation, Immunity, and Hypertension. Acta Med Indones 2017; 49(2): 158–165.

34. Barcelo A, Esquinas C, Robles J, et al. Gut epithelial barrier markers in patients with obstructive sleep apnea. Sleep Med 2016; 26: 12–15.

35. Kheirandish -Gozal L, Peris E, Wang Y, et al. Lipopolysaccharide -binding protein plasma levels in children: effects of obstructive sleep apnea and obesity. J Clin Endocrinol Metab 2014; 99(2): 656–663.

36. Morris G, Berk M, Carvalho A, et al. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Mol Neurobiol 2017; 54(6): 4432–4451.

37. Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5(1): 14.

38. Gérard P. Gut microbiota and obesity. Cell Mol Life Sci 2016; 73(1): 147–162.

39. Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Invest 2018; 9(1): 5–12.

40. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocri Metab Disorders 2019; 20(4): 461–472.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 7

2020 Issue 7

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#