Sarcopenia as a severe organ failure, its diagnosing and present therapeutic possibilities

Authors: Eva Topinková
Authors‘ workplace: Geriatrická klinika 1. LF UK a VFN v Praze
Published in: Vnitř Lék 2018; 64(11): 1038-1052


Sarcopenia is defined as generalized and progressive age-related loss of skeletal muscle mass, muscle strength and physical performance below a defined threshold. In sarcopenia skeletal muscle mass – the largest body organ – is failing in its function and the term „muscle failure“ was suggested. Sarcopeniat is now recognized as a serious clinical problem compromising healthy aging concept and quality of life of affected older people. Sarcopenia has a complex multifactorial pathogenesis, which involves not only age-related changes in neuromuscular function, muscle protein turnover, and hormone levels and sensitivity, but also a chronic pro-inflammatory state, oxidative stress, and behavioral factors – particularly nutritional status and degree of physical activity. The paper provides detailed review of screening and diagnostic methods and consensus-based cut off values and biomarkers of potential patophysiologic mechanisms involved in sarcopenia development in individual patient. Further, detailed description of current preventive and therapeutic strategies for sarcopenia is included. These involve structured physical activities, namely progressive resistance training and aerobic activities which prevent muscle loss and improve muscle performance. The effect of exercise is enhanced by nutritional supplementation, particularly through proteoanabolic effect of proteins and some amino acids. There are no currently registered drugs with indication of sarcopenia but there are promising substances in higher phases of clinical trials (such as antimyostatin human monoclonal antibodies, selective androgen receptor modulators) which have the potential to be introduced into clinical practice soon. Conclusions Sarcopenia is a new clinical diagnosis of organ failure of the skeletal muscle function leading to multiple adverse health outcomes. Physicians should be aware of clinical symptoms and diagnostic algorithm and target treatment according to sarcopenia leading causes.

Key words:

clinical diagnosis and treatment – muscle failure – muscle mass, strength and function – sarcopenia

  1. Fried LP, Tangen CM, Walston J et al. Frailty in older adults: Evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56(3): M146–156.
  2. Drey M, Pfeifer K, Sieber C et al. The Fried frailty criteria as inclusion criteria for a randomized controlled trial: Personal experience and literature review. Gerontology 2011; 57(1): 11–18. Dostupné z DOI: <>.
  3. Rockwood K, Song X, Mac Knight C et al. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005; 173(5): 489–495. Dostupné z DOI: <>.
  4. 2018 ICD-10-CM Diagnosis Code M62.84. Dostupné z WWW: <>.
  5. Vellas B, Fielding RA, Bens C et al. Implications of ICD-10 for sarcopenia clinical practice and clinical trials: report by the International Conference on Frailty and Sarcopenia Research Task Force. J Frailty Aging 2018; 7(1): 2–9. Dostupné z DOI: <>.
  6. Anker SD, Coats AJS, Morely JE et al. Muscle wasting disease: A proposal for a new disease classification. J Cachexia Sarcopenia Muscle 2014; 5(1): 1–3. Dostupné z DOI: <–014–0135–0>.
  7. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 2002; 50(5): 889–896.
  8. Steffl M, Sima J, Shiells K et al. The increase in health care costs associated with muscle weakness in older people without long-term illnesses in the Czech Republic: results from the Survey of Health, Ageing and Retirement in Europe (SHARE). Clin Interv Aging 2017; 12: 2003–2007. Dostupné z DOI: <>.
  9. Shafiee G, Keshtkar A, Soltani A et al. Prevalence of sarcopenia in the world: a systematic review and metaanalysis of general population studies. J Diabetes Metab Disord 2017; 16: 21. Dostupné z DOI: <–017–0302-x>.
  10. Ethgen O, Beaudart C, Buckinx F et al. The future prevalence of sarcopenia in Europe: a claim for public health action. Calcif Tissue Int 2017; 100(3): 229–234. Dostupné z DOI: <–016–0220–9>.
  11. Beaudart Ch, McCloskey E, Bruyere O et al. Sarcopenia in daily practice: assessment and management. BMC Geriatrics 2016; 16(1): 170. Dostupné z DOI: <–016–0349–4>.
  12. Landi F, Cruz-Jentoft AJ, Liperoti R et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing 2013; 42(2): 203–209. Dostupné z DOI: <>.
  13. Morais JA. Sarcopenia – definitions and epidemiology. In: Evans JG, Williams TF, Beattie BL (eds) et al. Oxford Textbook of Geriatric Medicine. 2nd ed. Oxford University Press 2018. Chapter 54: 409–414. ISBN 978–0192628305.
  14. Cawthon PM, Lui LY, Taylor BC et al. Clinical definitions of sarcopenia and risk of hospitalization in community-dwelling older men: The Osteoporotic Fractures in Men Study. J Gerontol A Biol Sci Med Sci 2017; 72(10): 1383–1389. Dostupné z DOI: <>.
  15. Liguori I, Russo G Aran L et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging 2018; 13 :913–927. Dostupné z DOI: <>.
  16. Bernard T, Fielding RA. Pathophysiology of sarcopenia. In: Evans JG, Williams TF, Beattie BL (eds) et al. Oxford Textbook of Geriatric Medicine. 2nd ed. Oxford University Press 2018: Chapter 55. 415–420. ISBN 978–0192628305.
  17. Cuthbertson D, Smith K, Babraj J et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. Faseb J 2005; 19(3): 422–424. Dostupné z DOI: <–2640fje>.
  18. Paddon-Jones J, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009; 12(1): 86–90. Dostupné z DOI: <>.
  19. Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine 2013; 43(1): 12–21. Dostupné z DOI: <–012–9751–7>.
  20. Schaap LA, Pluijm SM, Deeg DJ et al. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci 2009; 64(11): 1183–1189. Dostupné z DOI: <>.
  21. Lambert CP, Wright NR, Finck BN et al. Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol 2008; 105(2): 473–478. Dostupné z DOI: <>.
  22. Ferrucci L, Penninx BW, Volpato S et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 2002; 50(12): 1947–1954.
  23. Goldberg EL, Dixit VD. Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev 2015; 265(1): 63–74. Dostupné z DOI: <>.
  24. Calvani R, Joseph AM, Adhihetty PJ et al. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem 2013; 394(3): 393–414. Dostupné z DOI: <–0247>.
  25. Sayer AA, Syddall H, Martin H et al. The developmental origins of sarcopenia. J Nutr Health Aging 2008; 12(7): 427–432.
  26. Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J 2013; 3(4): 346–350.
  27. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 2010; 39(4): 412–423. Dostupné z DOI: <>.
  28. Steffl M, Bohannon RW, Sontakova L et al. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging 2017; 12: 835–845. Dostupné z DOI: <>.
  29. Bahat G, Ilhan B. Sarcopenia and the cardiometabolic syndrome: a narrative review. Eur Geriatr Med 2016; 7(3): 220–223. Dostupné z DOI: <>.
  30. Bone AE, Hepgul N, Kon S et al. Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis 2017; 14(1): 85–99. Dostupné z DOI: <>.
  31. Muscaritoli M, Anker SD, Argiles J et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010; 29(2): 154–159. Dostupné z DOI: <>.
  32. Prado CM, Wells JC, Smith SR et al. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr 2012; 31(5): 583–601. <>.
  33. Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 2017; 35: 200–221. Dostupné z DOI: <>.
  34. Kob R, Bollheimer LC, Bertsch T et al. Sarcopenic obesity: molecular clues to a better understanding of its pathogenesis? Biogerontology 2015; 16(1): 15–29. Dostupné z DOI: <–014–9539–7>.
  35. Reinders I, Murphy RA, Brouwer IA et al. Muscle quality and myosteatosis: novel associations with mortality risk: the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Am J Epidemiol 2016; 183(1): 53–60. Dostupné z DOI: <>.
  36. Cruz-Jentoft AJ, Landi F, Topinková E et al. Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care 2010; 13(1): 1–7. Dostupné z DOI: <>.
  37. Malmstrom TK, Miller DK, Simonsick EM et al. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle 2016; 7(1): 28–36. Dostupné z DOI: <>.
  38. Ida S, Kaneko R, Murata K. SARC-F for screening of sarcopenia among alder adults: A meta-analysis of screening test accuracy. J Am Med Dir Assoc 2018; 19(8): 685–689. Dostupné z DOI: <>.
  39. Fielding RA, Vellas B, Evans WJ et al. Sarcopenia: an undiagnosed condition in older adults current consensus definition: prevalence, etiology, and consequences. International Working Group on Sarcopenia. J Am Med Dir Assoc 2011; 12(4): 249–256. Dostupné z DOI: <>.
  40. Morley JE, Abbatecola AM, Argiles JM et al. Sarcopenia with limited mobility: an International Consensus. J Am Med Dir Assoc 2011; 12(6): 403–409. Dostupné z DOI: <>.
  41. Studenski SA, Peters KW, Alley DE et al. The FNIH Sarcopenia Project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014; 69(5): 547–558. Dostupné z DOI: <>.
  42. Chen LK, Liu LK, Woo J et al. Sarcopenia in Asia: consensus Report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014; 15(2): 95–101. Dostupné z DOI: <>.
  43. Leong DP, Teo KK, Rangarajan S et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015; 386(9990): 266–273. Dostupné z DOI: <–6736(14)62000–6>.
  44. Roberts HC, Denison HJ, Martin HJ et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 2011; 40(4): 423–429. Dostupné z DOI: <>.
  45. Dodds RM, Syddall HE, Cooper R et al. Grip strength across the life course: normative data from twelve British studies. PLoS One 2014; 9(12): e113637. Dostupné z DOI: <>.
  46. Pinheiro PA, Carneiro JAO, Coqueiro RS et al. “Chair Stand Test” as simple tool for sarcopenia screening in elderly women. J Nutr Health Aging 2016; 20(1): 56–59. Dostupné z DOI: <–015–0621-x>.
  47. Francis P, Toomey C, Mc Cormack W et al. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women. Clin Physiol Funct Imaging 2017; 37(4): 448–455. Dostupné z DOI: <>.
  48. Peel NM, Kuys SS, Klein K. Gait speed as a measure in geriatric assessment in clinical settings: a systematic review. J Gerontol A Biol Sci Med Sci 2013; 68(1): 39–46. Dostupné z DOI: <>.
  49. Studenski S, Perera S, Patel K et al. Gait speed and survival in older adults. JAMA 2011; 305(1): 50–58. Dostupné z DOI: <>.
  50. Rydwik E, Bergland A, Forsen L et al. Investigation into the reliability and validity of the measurement of elderly people’s clinical walking speed: a systematic review. Physiother Theory Pract 2012; 28(3): 238–256. Dostupné z DOI: <>.
  51. Verghese J, Annweiler C, Avers E et al. Motoric cognitive risk syndrome: multicountry prevalence dementia risk. Neurology 2014; 83(8): 718–726. Dostupné z DOI: <>.
  52. Vestergaard S, Patel KV, Bandinelli S et al. Characteristics of 400-meter walk test performance and subsequent mortality in older adults. Rejuvenation Res 2009; 12(3): 177–184. Dostupné z DOI: <>.
  53. Marzetti E, Cesari M, Calvani R et al. The “Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies” (SPRINTT) randomized controlled trial: case finding, screening and characteristics of eligible participants. Exp Gerontol 2018; 113: 48–57. Dostupné z DOI: <>.
  54. Rolland YM, Cesari M, Miller ME et al. Reliability of the 400-m usual-pace walk test as an assessment of mobility limitation in older adults. J Am Geriatr Soc 2004; 52(6): 972–976. Dostupné z DOI: <–5415.2004.52267.x>.
  55. Guralnik JM, Ferrucci L, Pieper CF et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 2000; 55(4): M221-M231.
  56. Pavasini R, Guralnik J, Brown JC et al. Short Physical Performance Battery and all-cause mortality: systematic review and meta-analysis. BMC Med 2016; 14(1): 215. Dostupné z DOI: <–016–0763–7>.
  57. Berková M, Topinková E, Mádlová P et al. Krátká baterie pro testování fyzické zdatnosti seniorů – pilotní studie a validizace testu u starších osob v České republice. Vnitř Lék 2013; 59(4): 256–263.
  58. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39(2): 142–148.
  59. Kalvach Z, Čeledová L, Holmerová I et al. Křehký pacient a primární péče. 1. elektronické vyd. Grada: Praha 2012. ISBN 978–80–247–7628–6 (online; pdf). ISBN 978–80–247–7629–3 (online; epub).
  60. Bischoff HA, Stahelin HB, Monsch AU et al. Identifying a cut-off point for normal mobility: a comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age Ageing 2003; 32(3): 315–320.
  61. Cooper C, Fielding R, Visser M et al. Tools in the assessment of sarcopenia. Calcif Tissue Int 2013; 93(3): 201–210. Dostupné z DOI: <–013–9757-z>.
  62. Cawthon PM, Peters KW, Shardell MD et al. Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. J Gerontol A Biol Sci Med Sci 2014; 69(5): 567–575. Dostupné z DOI: <>.
  63. Kim J, Wang Z, Heymsfield SB et al. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 2002; 76(2): 378–383. Dostupné z DOI: <>.
  64. Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc 2008; 56(9): 1710–1715. Dostupné z DOI: <–5415.2008.01854.x>.
  65. Yamada Y, Nishizawa M, Uchiyama T et al. Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for sarcopenia. Int J Environ Res Public Health 2017; 14(7). pii: E809. Dostupné z DOI: <>.
  66. Gould H, Brennan SL, Kotowicz MA et al. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study. Calcif Tissue Int 2014; 94(4): 363–372. Dostupné z DOI: <–013–9830–7>.
  67. McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan 2014; 3(1): 9. Dostupné z DOI: <–2395–3-9>.
  68. Nijholt W, Scafoglieri A, Jager-Wittenaar H et al. The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review. J Cachexia Sarcopenia Muscle 2017; 8(5): 702–712. Dostupné z DOI: <>.
  69. Calvani R, Marini F, Cesari M et al. Biomarkers for physical frailty and sarcopenia. Aging Clin Exp Res 2017; 29(1): 29–34. Dostupné z DOI: <–016–0708–1>.
  70. Wall BT, Dirks ML, Van Loon LJ. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 2013; 12(4): 898–906. Dostupné z DOI: <>.
  71. Yamada M, Arai H, Sonoda T et al. Community-based exercise program is cost-effective by preventing care and disability in Japanese frail older adults. J Am Med Dir Assoc 2012; 13(6): 507–511. Dostupné z DOI: <>.
  72. Liu CJ, Latham NK Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev 2009; (3): CD002759. Dostupné z DOI: <>.
  73. Fragala MS, Dam TT, Barber V et al. Strength and function response to clinical interventions of older women categorized by weakness and low lean mass using classifications from the Foundation for the National Institute of Health sarcopenia project. J Gerontol A Biol Sci Med Sci 2015; 70(2): 202–209. Dostupné z DOI: <>.
  74. Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 2011; 43(2): 249–258. Dostupné z DOI: <>.
  75. Robinson SM, Reginster JY, Rizzoli R et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr 2018; 37(4): 1121–1132. Dostupné z DOI: <>.
  76. Morley JE, Argiles JM, Evans WJ et al. Society for Sarcopenia, Cachexia, and Wasting Disease. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc 2010; 11(6): 391–396. Dostupné z DOI: <>.
  77. Calvani R, Miccheli A, Landi F et al. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging 2013; 2(1): 38–53.
  78. Bauer J, Biolo G, Cederholm T et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 2013; 14(8): 542–559. Dostupné z DOI: <>.
  79. Paddon-Jones J, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009; 12(1): 86–90. Dostupné z DOI: <>.
  80. Xu Z, Tan Z, Zhang Q et al. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr 2015; 113(1): 25–34. Dostupné z DOI: <>.
  81. McDonald CK, Ankarfeldt MZ, Capra S et al. Lean body mass change over 6 years is associated with dietary leucine intake in an older Danish population. Br J Nutr 2016; 115(9): 1556–1562. Dostupné z DOI: <>.
  82. Wu H, Xia Y, Jiang J et al. Effect of beta-hydroxy-betamethylbutyrate supplementation on muscle loss in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr 2015; 61(2): 168–175. Dostupné z DOI: <>.
  83. Beaudart C, Buckinx F, Rabenda V et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 2014; 99(11): 4336–4345. Dostupné z DOI: <–1742>.
  84. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 2009; 169(6): 551–561. Dostupné z DOI: <>.
  85. Bauer JM, Verlaan S, Bautmans I et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 2015; 16(9): 740–747. Dostupné z DOI: <>.
  86. Smith GI, Atherton P, Reeds DN et al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (Lond) 2011; 121(6): 267–278. Dostupné z DOI: <>.
  87. Marzetti E, Lawler JM, Hiona A et al. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med 2008; 44(2): 160–168. Dostupné z DOI: <>.
  88. Mercken EM, Carboneau BA, Krzysik-Walker SM et al. Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 2012; 11(3): 390–398. Dostupné z DOI: <>.
  89. Denison HJ, Cooper C, Sayer AA et al. Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging 2015; 10: 859–869. Dostupné z DOI: <>.
  90. Naseeb MA, Volpe SL. Protein and exercise in the prevention of sarcopenia and aging. Nutr Res 2017; 40: 1–20. Dostupné z DOI: <>.
  91. Cermak NM, Res PT, De Groot LC et al. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr 2012; 96(6): 1454–1464. Dostupné z DOI: <>.
  92. Ferrando AA, Sheffield-Moore M, Paddon-Jones D et al. Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab 2003; 88(1): 358–362. Dostupné z DOI: <–021041>.
  93. Yeap BB, Page ST, Grossmann M. Testosterone treatment in older men: clinical implications and unresolved questions from the Testosterone Trials. Lancet Diabetes Endocrinol 2018; 6(8): 659–672. Dostupné z DOI: <–8587(17)30416–3>.
  94. Snyder PJ, Bhasin S, Cunningham GR et al. Lessons From the Testosterone Trials. Endocr Rev 2018; 39(3): 369–386. Dostupné z DOI: <–00234>.
  95. Basaria S, Collins L, Dillon EL et al. The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci 2013; 68(1): 87–95. Dostupné z DOI: <>.
  96. Cesari M, Fielding R, Bénichou O et al. Pharmacological interventions in frailty and sarcopenia: report by the International Conference on Frailty and Sarcopenia Research Task Force. J Frailty Aging 2015; 4(3): 114–120. Dostupné z DOI: <>.
  97. Sumukadas D, Witham MD, Struthers AD et al. Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ 2007; 177(8): 867–874. Dostupné z DOI: <>.
  98. Band MM, Sumukadas D, Struthers AD et al. Leucine and ACE inhibitors as therapies for sarcopenia (LACE trial): study protocol for a randomised controlled trial. Trials 2018; 19(1): 6. Dostupné z DOI: <–017–2390–9>.
  99. Boutari C, Mantzoros CS. Decreasing Lean Body Mass with Age: Challenges and Opportunities for Novel Therapies. Endocrinol Metab (Seoul) 2017; 32(4): 422–425. Dostupné z DOI: <>.
  100. Pirruccello-Straub M, Jackson J, Wawersik S et al. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep 2018; 8(1): 2292. Dostupné z DOI: <–018–20524–9>.
  101. Landi F, Liperoti R, Fusco D. Prevalence and risk factors of sarcopenia among nursing home older residents. J Gerontol A Biol Sci Med Sci 2012; 67(1): 48–55. Dostupné z DOI: <http://doi: 10.1093/gerona/glr035>.
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 11

2018 Issue 11

Most read in this issue

This topic is also in:

Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account