#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Impact of long-term glycemic control on changes of lipid profile in children and adolescents with 1 type diabetes mellitus


Authors: J. Kostolanská 1;  V. Jakuš 2;  Ľ. Barák 3;  A. Staníková 4
Authors‘ workplace: I. detská klinika Lekárskej fakulty UK a DFNsP Bratislava, Slovenská republika, prednostka doc. MUDr. Oľga Červeňová, PhD. 1;  Ústav lekárskej chémie, biochémie a klinickej biochémie Lekárskej fakulty UK Bratislava, Slovenská republika, prednostka prof. Ing. Zdeňka Ďuračková, PhD. 2;  Detské diabetologické centrum SR pri I. detskej klinike UK a DFNsP Bratislava, Slovenská republika, vedúci pracoviska MUDr. Ľubomír Barák, CSc. 3;  Detská otorinolaryngologická klinika Lekárskej fakulty UK a DFNsP Bratislava, Slovenská republika, prednostka prof. MUDr. Janka Jakubíková, CSc. 4
Published in: Vnitř Lék 2011; 57(6): 533-539
Category: Original Contributions

Overview

Introduction:
Abnormalities in lipid metabolism contribute significantly to the increased occurrence of cardiovascular events in individuals with T1DM compared to healthy subjects. Disorder of lipid metabolism in T1DM is heavily dependent on maintaining of blood glucose values near the physiological range. DCCT study confirmed that patients with well compensated diabetes have similar lipid spectrum to the healthy subjects one.

Aims:
We aimed to study relations of lipid profile parameters (cholesterol of high density HDL, cholesterol of low density LDL, total cholesterol - TC, triglycerides - TAG) to age, duration of T1DM (DD), blood glucose, HbA1c and if the blood pressure (BP), BMI corrected for age (BMIc) and daily insulin doses per kilogram (DI) in 30 patients with T1DM with good long-term glycemic compensation. We aimed also to find mathematical models of lipid profile parameters dependence of the parameters of glycemic control, age, duration of DM1T, blood pressure (systolic and diastolic BPs, BPd, respectively) BMIc and DI.

Results:
HbA1c levels were significantly higher in diabetic patients compared to controls (p < 0.01), HDL were higher in diabetics than in controls (not significantly). LDL levels were in diabetics similar to controls. TAG was significantly lower in diabetics than in controls (p < 0.01). HDL significantly positively correlated with HbA1c (r = 0.372, p < 0.05) and negatively with BPs (r = -0.373, p < 0.05), TAG correlated with age (r = 0.546, p < 0.01), DD (r = 0.577, p < 0.001) and BPs (r = 0.407, p < 0.05). We also found a statistically appropriate mathematical models of the relationship of HDL and TAG with the parameters: age, DD, glucose, HbA1c, BP, BMIc, DI (r = 0.785, r2 = 0.616, p < 0.01, R = 0.758; r2 = 0.574, p < 0.05, respectively).

Conclusion:
The changes in HDL and TAG values in juvenile diabetics are significantly affected by particularly long-term glycemic control and insulin therapy.

Key words:
HbA1c - total cholesterol - HDL - LDL - triglycerides - blood pressure - insulin doses


Sources

1. Wu M, Chen Y, Wilson K et al. Intraretinal leakage and oxidation of LDL in diabetic retinopathy. Invest Ophthalmol Vis Sci 2008; 49: 2679-2685.

2. Marcovecchio ML, Dalton RN, Prevost AT et al. Prevalence of abnormal lipid profiles and the relationship with the development of microalbuminuria in adolescents with type 1 diabetes. Diabetes Care 2009; 32: 658-663.

3. Skyler JS, Bergenstal R, Bonow RO et al. American Diabetes Association; American College of Cardiology Foundation; American Heart Association. Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Circulation 2009; 119: 351-357.

4. Petitti DB, Imperatore G, Palla SL et al. SEARCH for Diabetes in Youth Study Group. Serum lipids and glucose control: the SEARCH for Diabetes in Youth study. Arch Pediatr Adolesc Med 2007; 161: 159-165.

5. Guy J, Ogden L, Wadwa RP et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: The search for dia­betes in youth case-control study. Diabetes Care 2009; 32: 416-420.

6. Sánchez-Quesada JL, Pérez A, Caixàs A et al. Effect of glycemic optimization on electronegative low-density lipoprotein in diabetes: relation to nonenzymatic glycosylation and oxidative modification. J Clin Endocrinol Metab 2001; 86: 3243-3249.

7. Vohnout B, Rašlová K. Rizikové faktory rozvoja aterosklerózy: Lipidy a ich vzťah k ateroskleróze. Via practica 2009; 6: 116-119.

8. Šebekova K, Heidland A. Diabetická nefropatia: novšie poznatky o patogenéze a terapii. Bratisl Lek Listy 2000; 101: 580-581.

9. Beszédešová N. Screening diabetickej retinopatie. Interní Med 2007; 9: 345-348.

10. Preventing diabeties complications. Posted by at on February 25, 2010. Dostupné na: http://diabetta.wordpress.com/2010/02/25/preventing-diabetes-complications/. Stiahnuté 10. 6. 2010.

11. Brizzi MF, Dentelli P, Gambino R et al. STAT5 activation induced by diabetic LDL depends on LDL glycation and occurs via src kinase activity. Diabetes 2002; 51: 3311-3317.

12. Shaw JE, Zimmet PZ, Gries FA et al. Epidemiology of diabetic neuropathy. In: Gries FA, Cameron NE, Low PA et al (eds). Textbook of diabetic neuropathy. New York: Thieme 2003: 64-82.

13. Thomas MC, Rosengård-Bärlund M, Mills V et al. Serum lipids and the progression of nephropathy in type 1 diabetes. Diabetes Care 2007; 30: 2706-2707.

14. Mineo C, Deguchi H, Griffin JH et al. Endothelial and antithrombotic actions of HDL. Circ Res 2006; 98: 1352-1364.

15. Becker G. Could HDL be bad for you? Health Central. MyDiabetesCentral.com. Dostupné na: http://www.healthcentral.com/diabetes/c/5068/19167/hdl-bad. Stiahnuté 11. 6. 2010.

16. Oravec S, Dukát P, Gavorník P et al. Zmeny v lipoproteínovom spektre pri končatinovo-cievnej ischemickej chorobe. Vnitř Lék 2010; 56: 620-623.

17. Freedman DS, Bowman BA, Otvos JD et al. Differences in the relation of obesity to serum triacylglycerol and VLDL subclass concentrations between black and white children: the Bogalusa Heart Study. Am J Clin Nutr 2002; 75: 827-833.

18. Urbanová Z., Šamánek M, Češka R et al. Diagnostika a léčba dyslipidémií u dětí a dospívajících. Doporučení pro diagnostiku a léčbu dyslipidémií u dětí a dospívajících vypracované výborem České společnosti pro aterosklerózu. Čes Slov Pediat 2008; 63: 164-172.

19. Šebeková K, Klassen A, Bahner U et al. Nadváha a obezita - faktory podmieňujúce vývin a progresiu ochorení obličiek. Vnitř Lék 2004; 50: 544-549.

20. Rušavý Z. Diabetická nefropatie. Aktuality v nefrologii 2002; 8. Dostupné na: Tigis web, http://www.tigis.cz/AVN/Index.htm. Stiahnuté 14. 9. 2010.

21. Charvát J, Kvapil M. Therapy of hyperglycemia and risk of ischemic heart disease: 2010 (Abstrakt). Čas Lék Čes 2010; 149: 235-236.

22. Kaňková K. Molecular pathophysiology of late complications diabetes mellitus -hyperglycemia-induced changes (Abstrakt). Vnitř Lék 2004; 50: 756-767.

23. www.rustovyhormon.cz. Percentilové grafy. Dostupné na: http://www.rustovyhormon.cz/mereni-a-hodnoceni-telesne-delky-vysky. Stiahnuté 21. 9. 2010.

24. Tkáč I, Fábryová Ľ, Rašlová K. Manažment dyslipidémií u pacientov s diabetes mellitus. Vyjadrenie stanoviska Slovenskej diabetologickej spoločnosti a Slovenskej asociácie aterosklerózy. Interná med 2006; 6: 45-52.

25. Ladeia AM, Adan L, Couto-Silva AC et al. Lipid profile correlates with glycemic control in young patients with type 1 diabetes mellitus. Prev Cardiol 2006; 9: 82-88.

26. Chajdiak J. Štatistika v Exceli. Bratislava: Statis 2002.

Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#