Carbapenem Resistance in Enterobacteria


Authors: J. Hrabák;  E. Chudáčková
Authors‘ workplace: Ústav mikrobiologie Lékařské fakulty UK v Plzni
Published in: Epidemiol. Mikrobiol. Imunol. 57, 2008, č. 4, s. 125-136

Overview

Carbapenems are the drugs of choice in the treatment of serious infections caused by multiresistant Gram-negative bacteria. Clinically and epidemiologically, resistance to these β-lactams poses the highest risk. In enterobacteria, two common mechanisms can cause the resistance to carbapenems: 1) hydrolysis of carbapenems by β-lactamases and 2) outer membrane impermeability. The focus is on types of carbapenemases described so far, detection methods, epidemiology of and therapeutic options for infections caused by carbapenemase-producing enterobacteria. Attention is also paid to the mechanisms involved in the control of outer membrane permeability, i.e. reduced porin expression or changes in the porin structure that prevent carbapenems from entering the Gram-negative bacterial periplasmic space.

Key words:
carbapenems – resistance – enterobacteria – ESBL – AmpC – MBL.


Sources

1. Amaral, L. Response of regulatory, efflux pump transporter and Omp genes during prolonged antibiotic stress and development of MDR in Gram-negative bacteria, Clin Microbiol Infect, 2008, Suppl. ECCMID 2008 Abstracts, S388.

2. Ambler, R.P. The structure of β-lactamases. Phil Trans R Soc Lond Biol, 1980, 289, 321-331.

3. Anderson, K.F., Lonsway, D.R., Rasheed, J.K., Biddle, J. et al. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microb, 2007, 45, 2723-2725.

4. Arakawa, Y, Shibata, N, Shibayama, K, Kurokawa, H. et al. Convenient test for screening metallo-β-lactamase-producing Gram-negative bacteria by using thiol compounds. J Clin Microb, 2000, 38, 40-43.

5. Baudry, P.J., Nichol, K., DeCorby, M., Mataseje, L. et al. Comparison of antimicrobial resistance profiles among extended-spectrum-beta-lactamase-producing and acquired AmpC beta-lactamase-producing Escherichia coli isolates from Canadian intensive care units. Antimicrob Agents Chemother, 2008, 52, 1846-1849.

6. Bauernfeind, A., Grimm, H., Schweighart, S. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection, 1990, 18, 294-298.

7. Bauvois, C., Ibuka, A.S., Celso, A., Alba, J. et al. Kinetic properties of four plasmid-mediated AmpCβ--lactamases, Antimicrob Agents Chemother, 2005, 49, 4240-4246.

8. Bebrone, C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol, 2007, 74, 1686-1701.

9. Bergerová, T, Hedlová, D, Jindrák, V, Urbášková, P. et al. Doporučený postup pro kontrolu výskytu kmenů Staphylococcus aureus rezistentních k oxacilinu (MRSA) a s jinou nebezpečnou antibiotickou rezistencí ve zdravotnických zařízeních. Prakt Lék, 2006, 86, 500–506. Dostupný také na WWW (http://www. cls.cz/dokumenty/dp_mrsa.doc).

10. Bidet, P., Burghoffer, B., Gautier, V., Brahimi, N. et al. In vivo transfer of plasmid-encoded ACC-1 AmpC from Klebsiella pneumoniae to Escherichia coli in an infant and selection of impermeability in K. pneumoniae. Antimicrob Agents Chemother, 2005, 49, 3562-3565.

11. Bradford, P. Extended-spectrum-β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 2001, 14, 933-951.

12. Bradford, P., Urban, C., Mariano, N., Projan, S. et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and loss of an outer memebrane protein. Antimicrob Agents Chemother, 1996, 41, 563-569.

13. Bush, K., Jacoby, G.A., Medeiros, A.A. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 1995, 39, 1211-1233.

14. Bush, K., Singer, S.B. Biochemical characteristics of extended broad spectrum β-lactamases. Infection, 1989, 17, 429-433.

15. Castanheira, M., Mendes, R.E., Walsh, T.R., Gales, A.C. et al. Emergence of the extended-spectrum beta-lactamase GES-1 in a Pseudomonas aeruginosa strain from Brazil: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother, 2004, 48, 2344-2345.

16. Castanheira, M., Toleman, M.A., Jones, R.N., Schmidt, F.J. et al. Molecular characterization of a β-lactamase gene, blaGIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob Agents Chemother, 2004, 48, 4654-β-4661.

17. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: sixteenth informational supplement. CLSI Document M100-S-16, PA, USA, 2006.

18. Cornaglia, G., Akova, M., Amicosante, G., Cantón, R. et al. Metallo-β-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int J Antimicrob Agents, 2007, 29, 380-388.

19. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum ß-lactamase CTX-M-15. Emerg Infect Dis, 2008, 14, 195-200.

20. Crowley, B., Benedí, J.V., Doménech-Sanchez, A. Expression of SHV-2 beta–lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems. Antimicrob Agents Chemother, 2002, 46, 3679-3682.

21. Daikos, G.L., Kosmidis, C., Tassios, P.T., Petrikkos, G. et al. Enterobacteriaceae bloodstream infections: presence of integrons, risk factors, and outcome. Antimicrob Agents Chemother, 2007, 2366‑2372.

22. Doménech-Sanchez, A., Martínez-Martínez, L., Hernendéz-Allés, S., Carmen Conejo, M. et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother, 2003, 47, 3332-3335.

23. Duarte, A., Boavida, F., Grosso, F., Correia, M. et al. Outbreak of GES-1 beta-lactamase-producing multidrug-resistant Klebsiella pneumoniae in a university hospital in Lisbon, Portugal. Antimicrob Agents Chemother, 2003, 47, 1481-1482.

24. Endiamini, A., Carias, L.L., Hujer, A.M., Bethel, C.R. et al. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United States. Antimicrob Agents Chemother, 2008, 52, 2680-2682.

25. Endiamini, A., Hujer, K.M., Carias, L.L., Perez, F. et al. Emergence of plasmid-mediated quinolone resistance in blaKPC – containing Klebsiella pneumoniae in the United States. 10th Beta-Lactamase Meeting Abstracts, Eretria, Řecko, 2008, 12.

26. Espedido, B.A., Thomas, L.C., Iredell, J.R. Metallo--β-lactamase or extended-spectrum β-lactamase: a wolf in sheep’s clothing. J Clin Microb, 2007, 45, 2034-2036.

27. Ferro-Luzzi, A.G. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs, membrane, soluble, and periplasmic fractions. J Biol Chem, 1973, 249, 634-644.

28. Fiett, J, Baraniak, A, Mrówka, A, Fleischer, M. et al. Molecular epidemiology of acquired-metallo-β--lactamase-producing bacteria in Poland. Antimicrob Agents Chemother, 2006, 50, 880-886.

29. Franklin, C, Liolios, L, Peleg, AY. Phenotypic detection of carbapenem-susceptible metallo-β--lactamase-producing Gram-negative bacilli in the clinical laboratory. J Clin Microb 2006; 44: 3139-3144.

30. Fritsche, T.R., Sader, H.S., Toleman, M.A., Walsh, T.R. et al. Emerging metallo-beta-lactamase-mediated resistance: a summary report from the worldwide SENTRY antimicrobial surveillance program. Clin Infect Dis, 2005, 41(Suppl. 4), 276-278.

31. Galani, I., Souli, M., Koratzanis, E., Chryssouli, Z. Molecular characterization of an Escherichia coli clinical isolate that produces both metallo-β-lactamase VIM-2 and extended-spectrum β-lactamase GES-7: identification of the In8 integron carrying the blaVIM-2 gene. J Antimicrob Chemother, 2006, 58, 432-433.

32. Galani, I., Souli, M., Chryssouli, Z., Katsala, D. et al. First identification of an Escherichia coli clinical isolate producing both metallo-β-lactamase VIM-2 and extended-spectrum β-lactamase IBC-1. Clin Microb Infect, 2004, 10, 749-772.

33. Galani, I., Souli, M., Chryssouli, Z., Orlandou, K. et al. Characterization of a new integron containing blaVIM-1 and aac(6’)-IIc in an Enterobacter cloacae clinical isolate from Greece. J Antimicrob Chemother, 2005, 55, 634-638.

34. Galani, I., Souli, M., Koratzanis, E., Koratzanis, G. et al. Emerging bacterial pathogens: Escherichia coli, Enterobacter aerogenes and Proteus mirabilis clinical isolates harbouring the same transferable plasmid coding for metallo-β-lactamase VIM-1 in Greece. J Antimicrob Chemother, 2007, 59, 578-579.

35. Garau, G., Di Guilmi, A.M., Hall, B.G. Structure-based phylogeny of the metallo-β-lactamases. Antimicrob Agents Chemother, 2005, 49, 2778-2784.

36. Giakkoupi, P., Vourli, S., Polemis, M., Vatopoulos A. Emergence of KPC-producing Klebsiella pneumoniae in Greece. 10th Beta-Lactamase Meeting Abstracts, Eretria, Řecko, 2008, 14.

37. Giakkoupi, P., Xanthaki, A., Kanelopoulou, M., Vlahaki, A. et al. VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae strain in Greek hospitals. J Clin Microb, 2003, 41, 3893-3896.

38. Gibb, A.P., Tribuddharat, C., Moore, R.A., Louie, T.J. et al. Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new blaIMP allele, blaIMP-7. Antimicrob Agents Chemother, 2002, 46, 255-258.

39. Gniadkowski, M. Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. Clin Microb Infect, 2001, 7, 597-608.

40. Grespo, M.P., Woodford, N., Sinclair, A., Kaufmann, M.E. et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia J Clin Microb, 2004, 42, 5094-5101.

41. Guillier, M., Gottesman, S., Storz, G. Modulating the outer membrane with small RNAs, Genes Dev., 2006, 20, 2338-2348.

42. Hawkey, P., Finch, R. Tigecycline: in-vitro performance as a predictor of clinical efficacy. Clin Microbiol Infect, 2007, 13, 354-362.

43. Hensyl, W.R. Bergey’s manual of determinantive bacteriology., Williams and Wilkins, Baltimore, USA, 1994.

44. Hernandéz-Allés, S., Carmen-Conejo, M., Pascual, A., Tomás, J.M. et al. Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae, Journal of Antimicrobial Chemotherapy, 2000, 46, 273-277.

45. Herbert, S., Halvorsen, D.S., Franklin, C., Spelman, D. Large outbreak of infection and colonization with Gram-negative pathogens carrying the metallo-β-lactamase gene blaIMP-4 at a 320-Bed tertiary hospital in Australia. Infect Control Hosp Infect, 2007, 28, 98-101.

46. Hrabák, J. Klinicky významné β-laktamázy gramnegativních bakterií: širokospektré β-laktamázy (ESBL). Epid mikrob imunol, 2007, 56, 103-111.

47. Hrabák, J. Klinicky významné β-laktamázy gramnegativních bakterií: AmpC. Epid mikrob imunol 2007, 56, 155-165.

48. Hrabák, J., Vaniš, V., Bergerová, T., Urbášková, P. Průkaz β-laktamáz širokého spektra (ESBL) a typu AmpC u enterobakterií. Zprávy CEM, 2007, 16, 31-36.

49. Hrabák, J., Vaniš, V., Bergerová, T., Jindrák, V. et al. Průkaz metalo-β-laktamáz (MBL) u gramnegativních bakterií. Zprávy CEM, 2007, 16, 417-422.

50. Jacoby, G.A. ß-lactamase nomenclature. Antimicrob Agents Chemother, 2006, 50, 1123-1129.

51. Jones, R.N., Biedenbach, D.J., Sader, H.S., Fritsche, T.R. et al. Emerging epidemic of metallo-beta-lactamase-mediated resistance. Diagn Microbiol Infect Dis, 2005, 51, 77-84.

52. Kaczmarek, F.M., Dib-Hajj, F., Shang, W., Gootz, T.D. High-level carbapenem resistance in Klebsiella pneumoniae clinical isolate is due to the combination of bla ACT-1 beta-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob Agents Chemother, 2006, 50, 3396-3406.

53. Kang, C.I., Kim, S.H., Park, W.B., Lee K.D. et al. Bloodstream infections due to extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. Antimicrob Agents Chemother, 2004, 48, 4574-4581.

54. Karabinis, A., Paramythiotou, E., Mylona-Petropoulou, D., Kalogeromitros, A. et al. Colistin for Klebsiella pneumoniae-associated sepsis. Clin Infect Dis, 2004, 38, 7-9.

55. Ktari, S., Arlet, G., Mnif, B., Gautier, V. et al. Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β--lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian university hospital. Antimicrob Agents Chemother, 2006, 4198‑4201.

56. Lartigue, M.F., Poirel, L., Aubert, D., Nordmann, P. In vitro analysis of ISEcp1B-mediated mobilization of naturally occuring beta-lactamase gene blaCTX-M of Kluyvera ascorbata, Antimicrob Agents Chemother, 2006, 50, 1282-1286.

57. Lauretti, L., Riccio, M.L., Mazzariol, A., Cornaglia, G. et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother, 1999, 43, 1584-1590.

58. Leavitt, A., Navon-Venezia, S., Chmelnitsky, I., Schwaber, M.J. et al. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother, 2007, 51, 3026 - 3029.

59. Leclercq, R., Cantón, R., Giske, C., Heisig, P. et al. Expert rules in antimicrobial susceptibility testing. European Committee on Antimicrobial Susceptibility Testing, 2008, http://www.srga.org/eucastwt/EUCAST %20Expert%20rules%20final%20April_20080407.pdf.

60. Lee, K., Yong, D., Choi, Y.S., Yum, J.H. et al. Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 beta-lactamases co-mediated by porin loss. Int J Antimicrob Agents, 2006, 29, 201-206.

61. Lee, K., Yum, J.H., Yong, D., Lee, H.M. et al. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea, Antimicrob Agents Chemother, 2005, 49, 4485-4491.

62. Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis, 2002, 34, 634-640.

63. Livermore D.M., Woodford N. The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter, Trends Microbiol., 2006, 14, 413-420.

64. Martínez-Martínez, L., Pascual, A., Hernendéz-Allés, S., Alvarez-Díaz, D. et al. Roles of beta-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob Agents Chemother, 1999, 43, 1669-1673.

65. Martínéz-Martínéz, L. Extended-spectrum beta-lactamases and the permeability barrier., Clin Microbiol Infect, 2008, 14(suppl.1), 82-89.

66. Massidda, O., Rossolini, G.M., Satta, G. The Aeromonas hydrophila cphA gene: molecular heterogenity among class B metallo-ß-lactamases. J Bacteriol, 1991, 173, 4611-4617.

67. Matthaiou, D.K., Michalopoulos, A., Rafailidis, P.I., Kirageorgopoulos, D.E. et al. Risk factors associated with the isolation of colistin-resistant gram-negative bacteria: a matched case-control study. Crit Care Med, 2008, 36, 807 - 811. Crit. Care Med.

68. Mazura, N., Sakagawa, E., Ohya, S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1995, 39, 645-649.

69. Mena, A., Plasencia, V., García, L., Hidalgo, O. et al. Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leasing to in vivo carbapenem resistance development. J Clin Microb, 2006, 44, 2831- 2837.

70. Migliavacca, R., Docquier, J.-D., Mugnaioli, C., Amicosante, G. et al. Simple microdilution test for detection of metallo-β-lactamase production in Pseudomonas aeruginosa. J Clin Microb, 2002, 40, 4388‑4390.

71. Miriagou, V., Tzelepi, E., Daikos, G.L., Tassios, P.T. et al. Panresistance in VIM-1-producing Klebsiella pneumoniae. J Antimicrob Chemother, 2005, 55, 810‑811.

72. Miriagou, V., Tzelepi, E., Giannele, D., Tzouvelekis, L.S. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo--β-lactamase VIM-1. Antimicrob Agents Chemother, 2003, 47, 395-397.

73. Moland, E.S., Hong, S.G., Thomson, K.S., Larone, D.H. et al. Klebsiella pneumoniae isolate producing at least eight different beta-lactamases, including AmpC and KPC beta-lactamases. Antimicrob Agents Chemother, 2007, 51, 800-801.

74. Naas, T., Cuzon, G., Villegas, M.V., Lartigue, M.F. et al. Genetic structures at the origin of aquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother, 2008, 52, 1257-1263.

75. Nicodemo, A.C., Garcia Paez, J.I. Antimicrobial therapy for Stenotrophomonas maltophilia infections. Eur J Clin Microbiol Infect Dis, 2007, 26, 229-237.

76. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev, 2003, 67, 593-656.

77. Nikaido, H. Transport across the bacterial outer membrane., J Bioenerg Biomembr, 1993, 25, 581-9.

78. Nikaido, H. Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor proteins. Methods Enyzmol 1983, 97, 85-100.

79. Nordmann, P. AmpCs, carbapenemases and carbapenem resistance, Clin Microbiol Infect, 2008, Suppl. ECCMID 2008 Abstracts, S127.

80. Osano, E., Arakawa, Y., Wacharotayankum, R., Ohta, M. et al. Molecular characterization of an enterobacterial metallo-beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother, 1994, 38, 71-78.

81. Panagiotakopoulou, A., Daikos, G.L., Miriagou, V., Loli, A. et al. Comparative in vitro killing of carbapenems and aztreonam against Klebsiella pneumoniae producing VIM-1 metallo-β-lactamase. Int J Antimicrob Agents, 2007, 29, 356-365.

82. Poeylaut, A.A., Tomatis, P.E., Karsisiotis, A.I., Damblon, C. et al. A minimalistic approach to identify substrate binding features in B1 metallo-β-lactamases. Bioorg Med Chem Lett, 2007, 17, 5171-5174.

83. Poirel, L., Cabanne, L., Collet, L., Nordmann, P. Clas II transposon-borne structure harboring metallo-β-lactamase gene blaVIM-2 in Pseudomonas putida. Antimicrob. Agents Chemother, 2006, 50, 2889‑2891.

84. Poirel, L., Decousser, J.W., Nordmann, P. Insertion sequence ISEcp1B is involved in expression and mobilization of blaCTX-M beta-lactamase gene. Antimicrob Agents Chemother, 2003, 47, 2938-2945.

85. Poirel, L., Hériter, C., Tolün, V., Nordmann, P. Emergence of oxacilinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2004, 48, 15-22.

86. Poirel, L., Lartigue, M.F., Decousser, J.W., Nordmann, P. ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli. Antimicrob Agents Chemother, 2004, 49, 447-550.

87. Poirel, L., Weldhagen, G.F., Naas, T., Champs, C.D. et al. GES-2, a class A β-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother, 2001, 45, 2598-2603.

88. Pournaras, S., Ikonomidis, A., Tzouvelekis, L.S., Tokatlidou, D. VIM-12, a novel plasmid-mediated metallo-β-lactamase from Klebsiella pneumoniae that resembles a VIM-1/VIM-2 hybrid. Antimicrob Agents Chemother, 2005, 49, 5153-5156.

89. Pournaras, S., Maniati, M., Spanakis, N., Ikonomidis, A., et al. Spread of efflux pump-overexpressing, non-metallo-β-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J Antimicrob Chemother, 2005, 56, 761-764.

90. Queenan, A.M., Bush, K. Carbapenemase: the versatile β-lactamases. Clin Microb Rev, 2007, 20, 440‑458.

91. Rasheed, J.K., Biddle, J.W., Anderson, K.F., Washer, L. et al. Detection of the Klebsiella pneumoniae carbapenemase type 2 Carbapenem-hydrolyzing enzyme in clinical isolates of Citrobacter freundii and K. oxytoca carrying a common plasmid. J Clin Microbiol, 2008, 46, 2066-2069.

92. Rodríguez-Martínez, J.-M., Pascual, A., García, I., Martínez-Martínez, L. Detection of plasmid-mediated quinolone resistance determinant qnr among clinical isolates of Klebsiella pneumoniae producing AmpC-type β-lactamase. J Antimicrob Chemother, 2003, 52, 703‑706.

93. Rodríguez-Martínez, J.M., Pichardo, C., García, I., Pachón-Ibanez, M.E. et al. Activity of ciprofloxacin and levofloxacin in experimental pneumonia caused by Klebsiella pneumoniae deficient in porins, expressing active efflux and producing QnrA1. Clin Microb Infect, 2008, 14, 691-697.

94. Rossoliny, G.M. Acquired metallo-β-lactamases: an increasing clinical threat. Clin Infect Dis, 2005, 41, 1557-1558.

95. Rossoliny, G.M., Mantengoli, E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa Clin Microb Infect, 2005, 11(Suppl. 4), 17-32.

96. Samra, Z., Ofir, O., Lishtzinsky, Y., Madar-Shapiro, L. et al. Outbreak of carbapenem-resistant Klebsiella pneumoniae producing KPC-3 in a tertiary medical centre in Israel. Int J Antimicrob Agents, 2007, 30, 525-529.

97. Simona, F., Magistrato, A., Vera, D.M.A., Garau, G. et al. Protonation state and substrate binding to B2 metallo-β-lactamase CphA from Aeromonas hydrofila. Proteins, 2007, 69, 595-605.

98. Siu, L.K. Antibiotics: action and resistance in gram-negative bacteria. J Microbiol Immunol Infect, 2002, 35, 1-11.

99. Smith Moland, E., Hanson, N.D., Herrera, V.L., Black, J.A. et al. Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother, 2003, 51, 711-714.

100. Stapleton, P.D., Shannon, K.P., French, G.L. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 ß-lactamase production and loss of an outer membrane protein. Antimicrob Agents Chemother, 1999, 43, 1206-1210.

101. Samuelsen, O. Emergence of KPC and MBLs in Scandinavia. 10th Beta-Lactamase Meeting Abstracts, Eretria, Řecko, 2008, 15.

102. Sharma, N., Toney, J.H., Fitzgerald, P.M.D. Expression, purification, crystalization and preliminary X-ray analysis of Aeromonas hydrophilia metallo-β-lactamase. Acta Cryst, 2005, F61, 180-182.

103. Stoczko, M., Frére, J.-M., Rossoliny, G.M., Docquier, J.-D. Postgenomic scan of metallo-β-lactamase homologues in Rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum. Antimicrob Agents Chemother, 2006, 50, 1973-1981.

104. Tascini, C., Urbani, L., Biancofiore, G., Rossoliny, G.M. et al. Colistin in combination with rifampin and imipenem for treating a blaVIM-1 metallo-β-lactamase producing Enterobacter cloacae disseminated infection in a liver transplant patient. Minerva Anestesiol, 2008, 74, 47-49.

105. Toleman, M.A., Simm, A.M., Murphy, T.A., Gales, A.C. et al. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother, 2002, 50, 673‑679.

106. Urbášková, P. Rezistence bakterií k antibiotikům. Vybrané metody. Praha: Trios, 1998.

107. Urbášková, P., Jakubů, V., Žemličková, H., Macková, B. a CZ-EARSS. Rezistence k antibiotikům u sedmi druhů invazivních bakterií, sledovaných v rámci EARSS v České republice v letech 2000-2006. Prakt Lék, 2007, 87, 32-39.

108. Vakulenko, S. GES β-lactamases: Evolution of resistance. 10th Beta-Lactamase Meeting Abstracts, Eretria, Řecko, 2008, 28.

109. Villegas, M.V., Lolans, K., Correa, A. Kattan, J.N. et al. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother, 2007, 51, 1553-1555.

110. Vourli, S., Tsorlini, H., Katsifa, H., Polemis, M. et al. Emergence of Proteus mirabilis carrying the blaVIM-1 metallo-β-lactamase gene. Clin Microb Infect, 2006, 12, 672-694.

111. Wachino, J., Doi, Y., Yamane, K., Shibata, N. et al. Nosocomial spread of ceftazidime-resistant Klebsiella pneumoniae strains producing a novel class a beta-lactamase, GES-3, in a neonatal intensive care unit in Japan, Antimicrob Agents Chemother, 2004, 48, 1960‑1967.

112. Walsh, T.R., Toleman, M.A., Poirel, L., Nordmann, P. Metalo-ß-lactamases: the quiet before the storm? Clin Microb Rev, 2005, 18, 306-325.

113. Wang, A., Yang, Y., Lu, Q., Wang, Y. et al. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China. BMC Infect Dis, 2008, 22, 8:68.

114. Woodford, N., Zhang, J.C., Warner, M., Kaufmann, M.E. et al. Arrival of KPC carbapenemase-producing Klebsiella pneumoniae in the United Kingdom: an Israel connection. 10th Beta-Lactamase Meeting Abstracts, Eretria, Řecko, 2008, 13.

115. Wu, J.-J., Ko, W.-C., Tsai, S.-H., Yan, J.-J. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese Hospital. Antimicrob Agents Chemother, 2007, 51, 1223-1227.

116. Xu, D., Xie, D., Guo, H. Catalytic mechanism of class B2 metallo-β-lactamase. J Biol Chem 2006, 281, 8740-8747.

117. Yan, J.-J., Ko, W.-C., Tsai, S.-H., Wu, H.-M. et al. Outbreak of infection with multidrug-resistant Klebsiella pneumoniae carrying blaIMP-8 in a university medical center in Taiwan. J Clin Microbiol, 2001, 39, 4433-4439.

118. Zavascki, A. P., Barth, A. L., Fernandes, J. F., Moro, A. L. D. et al. Reappraisal of Pseudomonas aeruginosa hospital-acquired pneumonia mortality in the era of metallo-β-lactamase-mediated multidrug resistance: a prospective observational study. Crit Care, 2006, 10, R114.

119. Zavascki, A.P., Barth, A.L., Goncalves, A.L., Moro, A.L. et al. The influence of metallo-β-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J Antimicrob Chemother, 2006, 58, 387-392.

120. Zavascki, A.P., Gaspareto, P.B., Martins, A.F., Goncalves, A.L. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-β-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother, 2005, 56, 1148-1151.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account