#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Pitfalls of extrahepatic bile duct cytology


Authors: Daniela Kurfürstová;  Zuzana Slobodová
Authors‘ workplace: Ústav klinické a molekulární patologie LFUP a FN Olomouc
Published in: Čes.-slov. Patol., 61, 2025, No. 3, p. 142-147
Category: Reviews Article

Overview

Cytological examination of extrahepatic bile ducts represents a challenging diagnostic field, often limited by sample quality and cellularity. Despite the availability of detailed classifications and cellular morphology descriptions, distinguishing benign from malignant lesions remains difficult in clinical practice. This paper reviews the current WHO classification system for pancreatobiliary cytopathology, with a focus on diagnostic categories specific to extrahepatic bile ducts. It discusses typical cytomorphological features, differential diagnoses, and the use of ancillary techniques such as immunohistochemistry and FISH, which may enhance diagnostic sensitivity and specificity. The importance of clinical context and interdisciplinary collaboration in cytological interpretation is emphasized.

Keywords:

cytology – Fish – WHO classification – extrahepatic bile ducts – biliary neoplasia – diagnostic categories


Sources
  1. Pitman MB, Layfield LJ. The Papanicolaou Society of Cytopathology System for Reporting Pancreatobiliary Cytology: Definitions, Criteria and Explanatory Notes. 1. vyd. Cham: Springer, 2015.
  2. IAC-IARC-WHO Joint Editorial Board. WHO Reporting System for Pancreaticobiliary Cytopathology. 1. vyd. Lyon: International Agency for Research on Cancer, 2022.
  3. Pitman MB, Centeno BA, Reid MD et al. The World Health Organization Reporting System for Pancreaticobiliary Cytopathology. Acta Cytologica 2023; 67(3): 304-320.
  4. WHO Classification of Tumours Editorial Board. Digestive System Tumours. 5. vyd. Lyon: International Agency for Research on Cancer, 2019.
  5. Zen Y, Ishikawa A, Ogiso S et al. Follicular cholangitis and pancreatitis -clinicopathological features and differential diagnosis of an underrecognised entitiy. Histopathology 2012; 60(2): 261-269.
  6. Zen Y, Quaglia A, Heaton N et al. Two distinct pathways of cancerogenesis in primary sclerosing cholangitis. Histopathology 2011; 59(6): 1100-1110.
  7. Cohen MB, Wittchow RJ, Johlin FC et al. Brush cytology of the extrahepatic billiary tract: comparison of cytologic fetures of adenocarcinoma and benign billiary strictures. Moder Pathology 1995; 8(5): 498-502.
  8. Renshaw AA, Madge R, Jiroutek M et al. Bile duct brushing cytology: statistical analysis of proposed diagnostic criteria. American Journal of Clinical Pathology 1998; 110(5): 635-640.
  9. Bergeron JP, Perry KD, Houser PM et al. Endoscopis ultrasound –⁠ guided pancreatic fine-needle aspiration: potential pitfalls in one institution´s expreience of 1212 procedures. Cancer Cytopathology 2015; 123(2): 98-107.
  10. Layfield LJ, Dodd L, Factor R et al. Malignancy risk associated with diagnostic categories defined by Papanicolau Society of Cytopathology pancreatobilliary guidelines. Cancer Cytopathology 2014; 122(6): 420-427.
  11. Layfield LJ, Schmidt RL, Cadwick BE et al. Inteobserver reproducibility and agreement with original diagnosis in the categories „atypical“ and„suspicious for malignancy“ for bile and pancreatic duct brushing. Diagnostic Cytopathlology 2015; 43(10): 797-801.
  12. Hosoda W, Chianchiano P, Griffin JF et al. Genetic analysis of isolated high-grade pancreatic intraepithelial neoplasia (HG-PanIN) reveal paucity of alterations in TP53 and SMAD4. Journal of Pathology 2017; 242(1): 16-23.
  13. Kanzawa M, Sanuki T, Onodera M et al. Double immunostaining for maspin and p53 on cell blocks increases the diangostic value of billiary brishing cytology. Pathology International 2017; 67(2): 91-98.
  14. Bergquist A, Tribukait B, Glaumann H, Broomé U. Can DNA cytometry be used for evaluation of malignancy and premalignancy in bile duct strictures in primary sclerosing cholangitis? Journal of Hepatology 2000; 33(6): 873-7.
  15. Gonda TA, Glick MP, Sethi A et al. Polysomy and p16 deletion by fluorescence in situ hybridization in the diagnosis of indeterminate biliary strictures. Gastrointestinal Endoscopy 2012; 75(1): 74-9.
  16. Zoundjiekpon VD, Falt P, Zapletalova J, Vanek P et al. Fluorescence In Situ Hybridization in Primary Diagnosis of Biliary Strictures: A Single-Center Prospective Interventional Study. Biomedicines 2023; 11(3):755.
  17. Gonda, T.A.; Viterbo, D.; Gausman et al. Mutation Profile and Fluorescence in Situ Hybridization Analyses Increase Detection of Malignancies in Biliary Strictures. Clincal Gastroenterology and Hepatology 2017; 15 : 913–919.
  18. Nakamuna Y, Sudo Y. Billiary tumors with pancreatic counterparts. Seminars in Diagnostic Pathology 2017; 34(2): 167-175.
  19. Nakanuma Y, Uesaka K, Kakuda Y et al. Intraductal papillary neoplasm of bile duct: updated clinicopathological characteristic and molecular and genetic alterations. Journal of Clinical Medicine 2020; 9(12): 3991.
  20. Zen Y, Fujii T, Itatsu K et al. Biliary papillary tumors share pathological features with intraductal papillary mucinous neoplasm of the pancreas. Hepathology 2006; 44(5): 1333-
  21. 1343.
  22. Zen Y, Fujii T, Itatsu K et al. Biliary cystic tumors with bile duct communication: a cystic variant of intraductal papillary neoplasm of the bile duct. Modern Pathology 2006; 19(9): 1234-1254.
  23. Navaneethan U, Njei B, Venkatesh PGK et al. Comparative diagnostic performance of brush cytology and biopsy in malignant biliary strictures: a systematic review and meta-analysis. Gastrointestinal Endoscopy 2018; 87(4): 907-914.
  24. Radtke A, Königsrainer A. Surgical Therapy of Cholangiocarcinoma. Visceral Medicine 2016; 32(6): 422–426.
  25. Mino-Kenudson M, Fernández-del Castillo C, Baba Y et al. Prognosis of invasive intraductal papillary mucinous neoplasm depends on histological and precursor epithelial subtypes. Gut 2011; 60(12): 1712-1720.
  26. Gonzalez RS, Bagci P, Basturk O et al. Intrapancreatic distal common bile duct carcinoma: Analysis, staging considerations, and comparison with pancreatic ductal and ampullary adenocarcinomas. Modern Pathology 2016; 29(11): 1358-1369.
  27. Ethun CG, Lopez-Aguiar AG, Pawlik TM et al. Distal Cholangiocarcinoma and Pancreas Adenocarcinoma: Are They Really the Same Disease? A 13-Institution Study from the US Extrahepatic Biliary Malignancy Consortium and the Central Pancreas Consortium. Journal of the American College of Surgery 2017; 224(4): 406-413.
  28. Pitman MB, Layfield LJ, Michael CW, et al.
  29. Interobserver reproducibility and agreement with original diagnosis in the categories „atypical“ and„suspicious for malignancy“ for bile and pancreatic duct brushings. Cancer Cytopathology 2014; 122(6): 414-420.
  30. Hartman DJ, Davison JM, Krasinskas AM, Lal A. Interobserver agreement in pathologic evaluation of bile duct biopsies. American Journal of Surgical Pathology 2021; 45(1): 49-55.
  31. Hoda RS, Pitman MB, Centeno BA, et al. Risk of malignancy associated with diagnostic categories of the proposed World Health Organization International System for Reporting Pancreaticobiliary Cytopathology. Cancer Cytopathology 2022; 130(1): 195–201.
  32. Kurfurstova D, Slobodova Z, Zoundjiekpon V, Urban O. The contribution of new methods in cytology for increasing sensitivity in the diagnosis of extrahepatic bile duct lesions. Biomedicak Papers of Medical Faculty University Palacky Olomouc Czech Republic 2023; 167(4): 309-318.
  33. Mamta G, Radha RP, Devi D, Sandeep G, Suresh S. Role of biliary tract cytology in the evaluation of extrahepatic cholestatic jaundice. Journal of Cytology 2013; 30(3): 162–168.
  34. Fior-Gozlan M, Giovannini D, Rabeyrin M et al. Monocentric study of bile aspiration associated with biliary brushing performed during endoscopic retrograde cholangiopancreatography in 239 patients with symptomatic biliary stricture. Cancer Cytopathology 2016; 124(5):330-9.
  35. Harbhajanka A, Michael CW, Janaki N, et al. Tiny but mighty: use of next generation sequencing on discarded cytocentrifuged bile duct brushing specimens to increase sensitivity of cytological diagnosis. Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology, Inc. 2020; 33(10): 2019-2025.
  36. Javle M, Bekaii-Saab T, Jain A et al. Biliary cancer: Utility of next-generation sequencing for clinical management. Cancer 2016; 122(24): 3838-3847.
  37. Dudley JC, Zheng Z, McDonald T, et al. Next-Generation Sequencing and Fluorescence in Situ Hybridization Have Comparable Performance Characteristics in the Analysis of Pancreaticobiliary Brushings for Malignancy. The Journal of Molecular Diagnostics: JMD. 2016; 18(1): 124-130.
  38. Le N, Fillinger J, Szanyi S et al. Analysis of microRNA expression in brush cytology specimens improves the diagnosis of pancreatobiliary cancer. Pancreatology 2019; 19(6):
  39. 873-879.
  40. Navaneethan U, Njei B, Lourdusamy V et al. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc. 2015; 81(1): 168-176.
Labels
Anatomical pathology Forensic medical examiner Toxicology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#