#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Etiology and diagnostic approach of growth failure in children born small for gestational age (SGA) with persistent short stature in childhood (SGA-SS)


Authors: L. Toni;  L. Plachý;  S. A. Amaratunga;  A. Kodýtková;  Š. Průhová;  J. Lebl
Authors‘ workplace: Pediatrická klinika 2. lékařské fakulty UK a Fakultní nemocnice Motol, Praha
Published in: Čes-slov Pediat 2020; 75 (4): 240-248.
Category:

Overview

Approximately 3–5% of all neonates are born with a birth weight and/or birth length of below -2 SD of the gestational age-specific normative values. They are assigned as being small for gestational age (SGA). About 90% of them will experience catch-up growth within the first two years of life. The additional 10%, who fail to catch-up and remain short during childhood, are referred as “small for gestational age-short stature” (SGA-SS) and fulfil arbitrary criteria for growth hormone (GH) administration.

The etiology of SGA-SS is heterogeneous. Some children have specific facial and other phenotypic features that allow targeted genetic testing; in others, the genetic testing might be more challenging. Significant genetic causes of SGA-SS include abnormal methylation patterns leading to Silver-Russell syndrome, defects of the GH – IGF-1 – growth plate axis, defective paracrine regulation of the chondrocyte, and abnormal formation of growth plate extracellular matrix. Identification of the genetic defect allows understanding the underlying pathophysiological mechanism of short stature and its inheritance pattern, facilitates a targeted search for comorbidities, and partly predicts the effect of treatment with growth hormone.

Keywords:

Genetics – small for gestational age – SGA – SGA-SS – Etiology – diagnostic procedures


Sources

1. Lee PA, Chernausek SD, Hokken-Koelega AC, et al. International Small for Gestational Age Advisory Board consensus development conference statement: management of short children born small for gestational age, April 24–October 1, 2001. Pediatrics 2003;111 (6 Pt 1): 1253–1261.

2. Finken MJ, van der Steen M, Smeets CC, et al. Children born small for gestational age: Differential diagnosis, molecular genetic evaluation, and implications. Endocr Rev 2018; 39 (6): 851–894.

3. Hokken-Koelega AC, De Ridder MA, Lemmen RJ, et al. Children born small for gestational age: do they catch up? Pediatr Res 1995; 38 (2): 267–271.

4. Clayton P, Cianfarani S, Czernichow G, et al. Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J Clin Endocrinol Metab 2007; 92 (3): 804–810.

5. Wakeling EL, Brioude F, Lokulo-Sodipe O, et al. Diagnosis and management of Silver–Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017; 13 (2): 105–124.

6. Marsaud C, Rossignol S, Tounian P, et al. Prevalence and management of gastrointestinal manifestations in Silver-Russell syndrome. Arch Dis Child 2015; 100 (4): 353–358.

7. Azzi S, Salem J, Thibaud N, et al. A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J Med Genet 2015; 52 (7): 446–453.

8. Netchine I, Rossignol S, Dufourg MN, et al. 11p15 Imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab 2007; 92 (8): 3148–3154.

9. Brioude F, Oliver-Petit I, Blaise A, et al. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J Med Genet 2013; 50 (12): 823–830.

10. Arboleda VA, Lee H, Parnaik R, et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet 2012; 44 (7): 788–792.

11. Hitchins MP, Stanier P, Preece MA, et al. Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions. J Med Genet 2001; 38: 810–819.

12. Binder G, Liebl M, Woelfle J, et al. Adult height and epigenotype in children with Silver-Russell syndrome treated with GH. Horm Res Paediatr 2013; 80 (3): 193–200.

13. Ioannides Y, Lokulo-Sodipe K, Mackay DJ, et al. Temple syndrome: improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases. J Med Genet 2014; 51 (8): 495–501.

14. Lionti T, Reid SM, White SM, et al. A population-based profile of 160 Australians with Prader-Willi syndrome: trends in diagnosis, birth prevalence and birth characteristics. Am J Med Genet A 2015; 167 (2): 371–378.

15. Mulchandani S, Bhoj EJ, Luo M, et al. Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. Genet Med 2016; 18 (4): 309–315.

16. Mehta A, Hindmarsh PC, Stanhope RG, et al. The role of growth hormone in determining birth size and early postnatal growth, using congenital growth hormone deficiency (GHD) as a model. Clin Endocrinol (Oxf) 2005; 63 (2): 223–231.

17. Laron, Z. Laron syndrome (Primary growth hormone resistance or insensitivity): The personal experience 1958–2003. J Clin Endocrinol Metab 2004; 89 (3): 1031– 1044.

18. Le Roith D, Bondy C, Yakar S, et al. The somatomedin hypothesis: 2001. Endocr Rev 2001; 22 (1): 53–74.

19. Constância M, Hemberger M, Hughes J, et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002; 417 (6892): 945–948.

20. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 1990; 345 (6270): 78–80.

21. Woods KA, Camacho-Hübner C, Savage MO, et al. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 1996; 335 (18): 1363–1367.

22. Walenkamp MJ, Karperien M, Pereira AM, et al. Homozygous and heterozygous ex- pression of a novel insulin-like growth factor-I mutation. J Clin Endocrinol Metab 2005; 90 (5): 2855–2864.

23. Netchine I, Azzi S, Houang M, et al. Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF1 mutation demonstrates its critical role in growth and brain development. J Clin Endocrinol Metab 2009; 94 (10): 3913–3921.

24. van Duyvenvoorde HA, van Setten PA, Walenkamp MJ, et al. Short stature associated with a novel heterozygous mutation in the insulin-like growth factor 1 gene. J Clin Endocrinol Metab 2010; 95 (11): 363–367.

25. Fuqua JS, Derr M, Rosenfeld RG, et al. Identification of a novel heterozygous IGF1 splicing mutation in a large kindred with familial short stature. Horm Res Paediatr 2012; 78 (1): 59–66.

26. Francke U, Yang-Feng TL, Brissenden JE, et al. Chromosomal mapping of genes involved in growth control. Cold Spring Harb Symp Quant Biol 1986; 51 (2): 855–866.

27. Boisclair YR, Rhoads RP, Ueki I, et al. The acid-labile subunit (ALS) of the 150 kDa IGF- binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol 2001; 170 (1): 63–70.

28. Renes JS, van Doorn J, Breukhoven PE, et al. Acid-labile subunit levels and the association with response to growth hormone treatment in short children born small for gestational age. Horm Res Paediatr 2014; 8 (2): 126–132.

29. Renes JS, van Doorn J, Hokken-Koelega A, et al. Current insights into the role of the growth hormone-insulin-like growth factor system in short children born small for gestational age. Horm Res Paediatr 2019; 92: 15–27.

30. Dauber A, Muñoz-Calvo MT, Barrios V, et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol Med 2016; 8 (4): 363–374.

31. Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 2015; 167 (12): 2869–2892.

32. Bartels CF, Bükülmez H, Padayatti P, et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 2004; 75 (1): 27–34.

33. Olney RC, Bükülmez H, Bartels CF, et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J Clin Endocrinol Metab 2006; 91 (4): 1229–1232.

34. Vasques GA, Funari MFA, Ferreira FM, et al. IHH gene mutations causing short stature with nonspecific skeletal abnormalities and response to growth hormone therapy. J Clin Endocrinol Metab 2018; 103 (2): 604–614.

35. Gkourogianni A, Andrew M, Tyzinski L, et al. Clinical characterization of patients with autosomal dominant short stature due to aggrecan mutations. J Clin Endocrinol Metab 2017; 102 (2): 460–469.

36. Plachy L, Strakova V, Elblova L, et al. High prevalence of growth plate gene variants in children with familial short stature treated with growth hormone. J Clin Endocrinol Metab 2019; 104 (10): 4273–4281.

37. Rao E, Weiss B, Fukami M, et al. Pseudoautosomal deletions encopassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet 1997; 16: 54–63.

38. Benito-Sanz S, Barroso E, Heine-Suñer D, et al. Clinical and molecular evaluation of SHOX/PAR1 duplications in Leri-Weill dyschondrosteosis (LWD) and idiopathic short stature (ISS). J Clin Endocrinol Metab 2011; 96 (2): 404–412.

39. Lebl J, Koloušková S, Toni L, et al. Syndrom Noonanové a další RASopatie: Etiologie, diagnostika a terapie. Čes-slov Pediat 2020; 75 (4): 219–226.

40. Ranke MB. Turner and Noonan syndromes: dinase – specific growth and growth-promoting therapies. In: Kelnar CJ, Savage MO, Saenger P, Cowell CT (Eds). Growth Disorders. 2nd ed. London, UK: Hodder Arnold; 2007: 512–525.

41. Homma TK, Krepischi ACV, Furuya TK, et al. Recurrent copy number variants associated with syndromic short stature of unknown cause. Horm Res Paediatr 2018; 89 (1): 13–21.

42. Maiorana A, Cianfarani S. Impact of growth hormone therapy on adult height of children born small for gestational age. Pediatrics 2009; 124 (3): 519–531.

43. Lebl J, Kolouskova S, Steensberg A, et al. Metabolic impact of growth hormone treatment in short children born small for gestational age. Horm Res Paediatr 2011; 76 (4): 254–261.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#