#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Antimicrobial substances produced by lactic acid bacteria


Authors: H. Kiňová Sepová;  A. Bílková;  F. Bilka;  L. Bezáková
Authors‘ workplace: Univerzita Komenského v Bratislave, Farmaceutická fakulta, Katedra bunkovej a molekulárnej biológie liečiv, Slovenská republika
Published in: Čes. slov. Farm., 2010; 59, 155-159
Category: Review Articles

Overview

Lactic acid bacteria comprise several genera of Gram-positive bacteria that are known for the production of different antimicrobial substances. Lactic acid and related organic acids, usual metabolites of saccharide metabolism, inhibit the growth of other microbes mainly by lowering pH. Bacteriocins, proteinaceous antimicrobial substances, are produced ribosomally and those of lactic acid bacteria are well examined. Some species, for example Lactobacillus reuteri, are able to produce specific substances with miscellaneous structures. One of them, reutericyclin, a derivate of tetramic acid, is the first discovered antibiotic produced by a lactic acid bacterium. Reuterin, a complex of 3-hydroxypropionaldehyde and its related forms, is a strong antimicrobial substance produced by several species of the genus Lactobacillus. Because of a non-pathogenic character of lactic acid bacteria, they can be used as food preservatives or as promising antimicrobials in human and/or animal therapy.

Key words:
lactic fermentation bacteria – probiotics – antimicrobially active substances


Sources

1. Pot, B., Tsakalidou, E.: Phylogenetics and Taxonomy. In: Ljungh, Ā., Wadström, T. eds. Lactobacillus Molecular Biology: From Genomics to Probiotics, 1st ed. Norfolk: Caister Academic Press 2009.

2. Prescott, L. M., Harley, J. P., Klein, D. A.: Bacteria: the low G+C gram positives. In: Prescott, L. M., Harley, J. P., Klein, D. A. eds. Microbiology, 5th ed. New York: McGraw.Hill Companies, Inc., 2002.

3. Mečnikov, E.: Lactic acid as inhibiting intestinal putrefaction. In: Mitchell, P. C., ed. The prolongation of life: Optimistic studies, ed. New York: The Knickerbocker Press 1908.

4. Gillor, O., Etzion, A., Riley, M. A.: The dual role of bacteriocins as anti. and probiotics. Appl. Microbiol. Biotechnol., 2008; 81, 591–606.

5. Ross, R. P., Morgan, S., Hill, C.: Preservation and fermentation: past, present and future. Int. J. Food Microbiol., 2002; 79, 3–16.

6. Ouwehand, A. C., Vesterlund, S.: Antimicrobial components from lactic acid bacteria. In: Salminen, S., von Wright, A., Ouwehand, A. C., eds. Lactic Acid Bacteria: Microbiological and Functional Aspects, ed. 3rd New York: Marcel Dekker, Inc. 2004.

7. Mucchetti, G., Locci, F., Massara, P., Vitale, R., Neviani, E.: Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard.cookes mini.cheeses. J. Dairy Sci., 2002; 85, 2489–2496.

8. Akita, S., Tanaka, K., Kinoshita, S.: Enzymic dehydration of L.glutamic acid. Biochem. Biophys. Res. Commun., 1959; 1, 179–181.

9. Chen, G. J., Russel, J. B.: Transport of glutamine by Streptococcus bovis and conversion of glutamine to pyroglutamic acid and ammonia. J. Bacteriol., 1989; 171, 2981–2985.

10. Van Coillie, E., Proost, P., Van Aelst, I., Struyf, S., Polfliet, M., De Meester, I., Harvey, D. J., Van Damme, J., Opdenakker, G.: Functional comparison of two human monocyte chemotactic protein.2 isoforms, role of the amino.terminal pyroglutamic acid and processing by CD26/dipeptidyl peptidase IV. Biochem. 1998; 37, 12672–12680.

11. Awade, A. C., Cleuziat, P., Gonzales, T. H., Robert.Baudouy, J.: Pyrrolidone carboxyl peptidase (Pcp.: an enzyme that removes pyroglutamic acid (pGlu. from pGlu.peptides and pGlu.proteins. Proteins Struct. Funct. Genet., 1994; 20, 34–51.

12. Beani, L., Bianchi, C., Baraldi, P. G., Manfredini, S., Pollini, G. P.: Protection by pyroglutamic acid and some of its newly synthesized derivatives against glutamate.induced seizures in mice. Drug Res., 1990; 40, 1187–1191.

13. Mirzoian, S. A., Zalinian, M. G., Balasanian, M. G., Topchian, A. V.: The central vascular and metabolic effects of pyroglutamic acid. Eksp. Klin. Farmakol., 1994; 57, 22–24.

14. Beni, M., Giampietro-Pellegrini, D. E., Moroni, F.: A new endogenous anxiolytic agent: L.pyroglutamic acid. Fundam. Clin. Pharmacol., 1988; 2, 77–82.

15. Yang, Z., Suomalainen, T., Mäyrä.Mäkinen, A., Huttunen, E.: Antimicrobial activity of 2.pyrrolidone.5.carboxylic acid produced by lactic acid bacteria. J. Food Prot., 1997; 60, 786–790.

16. Imlay, J. A.: How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv. Microb. Physiol., 2002; 46, 111–153.

17. Falagas, M. E., Betsi, G.I., Athanasiou, S.: Probiotics for the treatment of women with bacterial vaginosis. Clin. Microbiol. Infect., 2007; 13, 657–664.

18. Hawes, S. E., Hillier, S. L., Benedetti, J., Stevens, C. E., Koutsky, L. A., Wolner.Hanssen, P., Holmes, K. K.: Hydrogen peroxide.producing lactobacilli and acquisition of vaginal infections. J. Infect. Dis., 1996; 174, 1058–1063.

19. Lindgren, S. E., Dobrogosz, W. J.: Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 1990; 87, 149–163.

20. Daniels, J. A., Krishnamurthi, R., Rizvi, S. S. H.: J. A review of effects of carbon dioxide on microbial growth and food quality. J. Food Prot., 1985; 48, 532–537.

21. RŅssland, E., Langsrud, T., Granum, P. E., SŅrhaug, T.: Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co.cultured with Bacillus cereus in milk. Int. J. Food Microbiol., 2005; 98, 193–200.

22. Devlieghere, F., Debevre, J.: Influence of dissolved carbon dioxide on the growth of spoilage bacteria. Lebensm. Wiss. Technol., 2000; 33, 531–537.

23. Gänzle, M. G.: Reutericyclin: biological activity, mode of action, and potential applications. Appl. Microbiol. Biotechnol., 2004; 64, 326–332.

24. Messens, W., De, V. L.: Inhibitory substances produced by Lactobacilli isolated from sourdoughs – a review. Int. J. Food Microbiol., 2002; 72, 31–43.

25. Gänzle, M. G., Höltzel, A., Walter, J., Jung G., Hammes, W. P.: Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol., 2000; 66, 4325–4333.

26. Gänzle, M. G., Vogel, R. F.: Studies on the mode of action of reutericyclin. Appl. Environ. Microbiol., 2003; 69, 1305–1307.

27. Höltzel, A., Gänzle, M. G., Nicholson, G. J., Hammes, W. P., Jung, G.: The first low.molecular.weight antibiotic from lactic acid bacteria: reutericyclin, a new tetramic acid. Angew. Chem. Int. Ed., 2000; 39, 2766–2768.

28. Imamura, N., Adachi, K., Sano, H.: Magnesidin A, a component of marine antibiotic magnesidin, produced by Vibrio gazogenes ATCC29988. J. Antibiot., 1994; 47, 257–261.

29. Royles, B. J. L.: Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem. Rev., 1995; 95, 1981–2001.

30. Sobolov, M., Smiley, K. L.: Metabolism of glycerol by an acrolein.forming lactobacillus. J. Bacteriol., 1960; 79, 261–266.

31. Schutz, H., Radler, F.: Anaerobic reduction of glycerol to propanediol.1,3 by Lactobacillus brevis and Lactobacillus buchneri. Sys. Appl. Microbiol., 1984; 5, 169–178.

32. Talarico, T. L., Casas, I. A., Chung, T. C., Dobrogosz, W. J.: Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 1988; 32, 1854–1858.

33. Sauvageot, N., Gouffi, K., Laplace, J. M., Auffray, Y.: Glycerol metabolism in Lactobacillus collinoides: production of 3.hydroxypropionaldehyde, a precursor of acrolein. Int. J. Food Microbiol., 2000; 55, 167–170.

34. Axelsson, L. T., Chung, T. C., Dobrogosz, W. J., Lindgren, S. E.: Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis., 1989; 2, 131–136.

35. Chung, T. C., Axelsson, L. T., Lindgren, S. E., Dobrogosz, W. J.: In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb. Ecol. Health Dis., 1989; 2, 137–144.

36. El-Ziney, M. G., van der Tempel, T., Debevere, J., Jakobsen, M.: Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J. Food Prot., 1999; 62, 257–261.

37. Lüthi.Peng, Q., Dileme, F. B., Puhan, Z.: Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl. Microbiol. Biotechnol., 2002; 59, 289–296.

38. Talarico, T. L., Dobrogosz, W. J.: Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 1989; 33, 674–679.

39. Schauenstein, E., Esterbauer, H., Zollner, H.: Saturated aldehydes. In: Schauenstein, E., Esterbauer, H., Zollner, H., eds. Aldehydes in biological systems. Their natural occurrence and biological activities, ed. London: Pion 1997.

40. Twomey, D., Ross, R. P., Ryan, M., Meany, B., Hill, C.: Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Leeuwenhoek, 2002; 82, 165–185.

41. Nousiainen, J., Javanainen, P., Setälä, J., von Wright, A.: Lactic acid bacteria as animal probiotics. In: Salminen, S., von Wright, A., Ouwehand, A. C., eds. Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd ed. New York: Marcel Dekker Inc. 2004.

Labels
Pharmacy Clinical pharmacology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#