#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Sleep disordered breathing in spinal cord injury


Authors: L. Honzátková 1,2;  J. Kříž 3
Authors‘ workplace: 2. LF UK, Praha 1;  Centrum Paraple, o. p. s. 2;  Spinální jednotka při Klinice RHB, a TVL, 2. LF UK a FN Motol, Praha 3
Published in: Cesk Slov Neurol N 2025; 88(4): 236-242
doi: https://doi.org/10.48095/cccsnn2025236

Overview

The prevalence of sleep disordered breathing after spinal cord injury is significantly higher than in the general population. This is due to the pathologies characteristic of spinal cord lesions that affect these disorders. Primarily, the weakening of the respiratory muscles and reduced lung volume contribute to the greater collapsibility of the upper airways and hypoventilation during sleep. In the case of a sympathetic innervation disorder, the predominance of the parasympathetic leads to congestion of the nasal mucosa, decreasing the patency of the nasopharynx and increasing the resistance of the upper airways. Additionally, individuals with spinal cord injury often take sedative medication, potentially worsening breathing during sleep. Frequent neurogenic obesity or a supinated sleep position are also implicated in sleep-disordered breathing. The consequences of sleep disordered breathing are neurocognitive disorders and higher cardiovascular morbidity. Similar to the general population, diagnosis is based on history, subjective questionnaires, and polysomnographic examination in sleep laboratories, which are usually unsuitable for clients with special needs. Therefore, home sleep apnea testing using simpler devices is often used. Positive airway pressure (PAP) therapy is the standard treatment for moderate to severe obstructive sleep apnea. Despite its high efficiency, low adherence is a limitation in individuals with a spinal cord injury, especially in tetraplegics. An alternative treatment for those intolerant to PAP is an oral appliance, which prevents the collapse of the upper airway by advancing the mandible. Lifestyle changes and respiratory physiotherapy are also effective measures. However, the fundamental problem lies in the low detection of the disease and the associated insufficient therapy, significantly impacting the quality of life of individuals with a spinal cord lesion.

Keywords:

Sleep apnea – spinal cord injury – polysomnography – positive airway pressure therapy – mandibular advancement device


Sources

1. Kriz J, Kulakovska M, Davidova H et al. Incidence of acute spinal cord injury in the Czech Republic: a prospective epidemiological study 2006–2015. Spinal Cord 2017; 55(9): 870–874. doi: 10.1038/sc.2017.20.

2. Kriz J, Sediva K, Maly M. Causes of death after spinal cord injury in the Czech Republic. Spinal Cord 2021; 59(7): 814–820. doi: 10.1038/s41393-020-00593-2.

3. Biering-Sørensen M, Norup PW, Jacobsen E et al. Treatment of sleep apnoea in spinal cord injured patients. Paraplegia 1995; 33(5): 271–273. doi: 10.1038/sc.1995.61.

4. Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 2009; 373(9657): 82–93. doi: 10.1016/S0140-6736(08)61622-0.

5. Graco M, McDonald L, Green SE et al. Prevalence of sleep-disordered breathing in people with tetraplegia-a systematic review and meta-analysis. Spinal Cord 2021; 59(5): 474–484. doi: 10.1038/s41393-020-00595-0.

6. Senaratna CV, Perret JL, Lodge CJ et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 2017; 34 : 70–81. doi: 10.1016/j.smrv.2016.07.002.

7. Sankari A, Bascom A, Oomman S et al. Sleep disordered breathing in chronic spinal cord injury. J Clin Sleep Med 2014; 10(1): 65–72. doi: 10.5664/jcsm.3362.

8. Berlowitz DJ, Brown DJ, Campbell DA et al. A longitudinal evaluation of sleep and breathing in the first year after cervical spinal cord injury. Arch Phys Med Rehabil 2005; 86(6): 1193–1199. doi: 10.1016/j.apmr.2004. 11.033.

9. Kemlink D. Poruchy dýchání ve spánku u nervosvalových onemocnění. Neurol praxi 2022; 23(3): 211–216. doi: 10.36290/neu.2022.038

10. Matuška P, Kára T, Homolka P et al. Léčba poruch dýchání vázaných na spánek u pacientů s onemocněním kardiovaskulárního systému. Kardiol Rev Int Med 2013, 15(2): 94–98.

11. Nevšímalová S, Šonka K. Poruchy dýchání ve spánku. Praha: Galén 2020.

12. Lněnička J. Respirační insuficience, chronická hyperkapnie a domácí neinvazivní ventilace z pohledu pneumologa. Vnitř Lék 2021; 67(6): 323–327.

13. Bascom AT, Sankari A, Badr MS. Spinal cord injury is associated with enhanced peripheral chemoreflex sensitivity. Physiol Rep 2016; 4(17): e12948. doi: 10.14814/phy2.12948.

14. Sankari A, Badr MS, Martin JL et al. Impact of spinal cord injury on sleep: current perspectives. Nat Sci Sleep 2019; 11 : 219–229. doi: 10.2147/NSS.S197375.

15. Chiodo AE, Sitrin RG, Bauman KA. Sleep disordered breathing in spinal cord injury: a systematic review. J Spinal Cord Med 2016; 39(4): 374–382. doi: 10.1080/10790268.2015.1126449.

16. Sankari A, Bascom AT, Badr MS. Upper airway mechanics in chronic spinal cord injury during sleep. J Appl Physiol (1985) 2014; 116(11): 1390–1395. doi: 10.1152/japplphysiol.00139.2014.

17. Wijesuriya NS, Lewis C, Butler JE et al. High nasal resistance is stable over time but poorly perceived in people with tetraplegia and obstructive sleep apnoea. Respir Physiol Neurobiol 2017; 235 : 27–33. doi: 10.1016/j.resp.2016.09.014.

18. Wijesuriya NS, Gainche L, Jordan AS et al. Genioglossus reflex responses to negative upper airway pressure are altered in people with tetraplegia and obstructive sleep apnoea. J Physiol 2018; 596(14): 2853–2864. doi: 10.1113/JP275222.

19. Farkas GJ, Gater DR. Neurogenic obesity and systemic inflammation following spinal cord injury: a review. J Spinal Cord Med 2018; 41(4): 378–387. doi: 10.1080/10790268.2017.1357104.

20. Burns SP, Kapur V, Yin KS et al. Factors associated with sleep apnea in men with spinal cord injury: a population-based case-control study. Spinal Cord 2001; 39(1): 15–22. doi: 10.1038/sj.sc.3101103.

21. Marshansky S, Mayer P, Rizzo D et al. Sleep, chronic pain, and opioid risk for apnea. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87(Pt B): 234–244. doi: 10.1016/j.pnpbp.2017.07.014.

22. Wang SH, Chen WS, Tang SE et al. Benzodiazepines associated with acute respiratory failure in patients with obstructive sleep apnea. Front Pharmacol 2019; 9 : 1513. doi: 10.3389/fphar.2018.01513.

23. Berlowitz DJ, Spong J, Gordon I et al. Relationships between objective sleep indices and symptoms in a community sample of people with tetraplegia. Arch Phys Med Rehabil 2012; 93(7): 1246–1252. doi: 10.1016/j.apmr.2012.02.016.

24. Burns SP, Little JW, Hussey JD et al. Sleep apnea syndrome in chronic spinal cord injury: associated factors and treatment. Arch Phys Med Rehabil 2000; 81(10): 1334–1339. doi: 10.1053/apmr.2000.9398.

25. Sajkov D, Marshall R, Walker P et al. Sleep apnoea related hypoxia is associated with cognitive disturbances in patients with tetraplegia. Spinal Cord 1998; 36(4): 231–239. doi: 10.1038/sj.sc.3100563.

26. Berlowitz DJ, Wadsworth B, Ross J. Respiratory problems and management in people with spinal cord injury. Breathe (Sheff) 2016; 12(4): 328–340. doi: 10.1183/20734735.012616.

27. Squair JW, Lee AHX, Sarafis ZK et al. Sleep-disordered breathing is associated with brain vascular reactivity in spinal cord injury. Neurology 2019; 93(24): e2181–e2191. doi: 10.1212/WNL.0000000000008619.

28. Weintraub SJ, Chen SX. A potential widespread and important role for sleep-disordered breathing in pressure injury development and delayed healing among those with spinal cord injury. Spinal Cord 2020; 58(5): 626–629. doi: 10.1038/s41393-020 -⁠ 0434-6.

29. Graco M, Schembri R, Cross S et al. Diagnostic accuracy of a two-stage model for detecting obstructive sleep apnoea in chronic tetraplegia. Thorax 2018; 73(9): 864–871. doi: 10.1136/thoraxjnl-2017-211131.

30. Pretl M. Diagnostika nejvýznamnějších poruch spánku. Psychiatr praxi 2021; 22(e1): e25–e37 doi: 10.36290/psy.2021.013

31. Kapur VK, Auckley DH, Chowdhuri S et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med 2017; 13(3): 479–504. doi: 10.5664/jcsm.6506.

32. Berlowitz DJ, Spong J, O‘Donoghue FJ et al. Transcutaneous measurement of carbon dioxide tension during extended monitoring: evaluation of accuracy and stability, and an algorithm for correcting calibration drift. Respir Care 2011; 56(4): 442–448. doi: 10.4187/respcare.00454.

33. Sankari A, Vaughan S, Bascom A et al. Sleep-disordered breathing and spinal cord injury: a state-of-the-art review. Chest 2019; 155(2): 438–445. doi: 10.1016/j.chest.2018.10.002.

34. Bauman KA, Kurili A, Schotland HM et al. Simplified approach to diagnosing sleep-disordered breathing and nocturnal hypercapnia in individuals with spinal cord injury. Arch Phys Med Rehabil 2016; 97(3): 363–371. doi: 10.1016/j.apmr.2015.07.026.

35. Graco M, Gobets DF, M O‘Connell C et al. Management of sleep-disordered breathing in three spinal cord injury rehabilitation centres around the world: a mixed-methods study. Spinal Cord 2022; 60(5): 414–421. doi: 10.1038/s41393-022-00780-3.

36. Epstein LJ, Kristo D, Strollo PJ Jr et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 2009; 5(3): 263–276.PMID: 19960649

37. Brown JP, Bauman KA, Kurili A et al. Positive airway pressure therapy for sleep-disordered breathing confers short-term benefits to patients with spinal cord injury despite widely ranging patterns of use. Spinal Cord 2018; 56(8): 777–789. doi: 10.1038/s41393-018-0077-z.

38. Graco M, Green SE, Tolson J et al. Worth the effort? Weighing up the benefit and burden of continuous positive airway pressure therapy for the treatment of obstructive sleep apnoea in chronic tetraplegia. Spinal Cord 2019; 57(3): 247–254. doi: 10.1038/s41393-018-0210-z.

39. de Vries GE, Hoekema A, Claessen JQPJ et al. Long-term objective adherence to mandibular advancement device therapy versus continuous positive airway pressure in patients with moderate obstructive sleep apnea. J Clin Sleep Med 2019; 15(11): 1655–1663. doi: 10.5664/jcsm.8034.

40. Ramar K, Dort LC, Katz SG et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med 2015; 11(7): 773–827. doi: 10.5664/jcsm.4858.

41. Phillips CL, Grunstein RR, Darendeliler MA et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med 2013; 187(8): 879–887. doi: 10.1164/rccm.201212-2223OC.

42. Ahrens A, McGrath C, Hägg U. A systematic review of the efficacy of oral appliance design in the management of obstructive sleep apnoea. Eur J Orthod 2011; 33(3): 318–324. doi: 10.1093/ejo/cjq079.

43. Sutherland K, Phillips CL, Cistulli P. Efficacy versus effectiveness in the treatment of obstructive sleep apnea: CPAP and oral appliances. JDSM 2015; 3 : 175–181. doi.org/10.15331/jdsm.5120 

44. Skalna M, Novak V, Buzga M et al. Oral appliance effectiveness and patient satisfaction with obstructive sleep apnea treatment in adults. Med Sci Monit 2019; 25 : 516–524. doi: 10.12659/MSM.911242.

45. Honzatkova L, Kriz J. Obstructive sleep apnea management in people with spinal cord injury, treatment options by mandibular advancement device (MAD). In: Proceedings from the 61st ISCoS Annual Scientific Meeting; September 15–18, 2022; Vancouver, Canada.

46. Honzatkova L, Graco M, Kriz J. Understanding adherence to Mandibular Advancement Device therapy for Obstructive Sleep Apnea in chronic Spinal Cord Injury. In: Proceedings from the 63st ISCoS Annual Scientific Meeting; September 22–25, 2024; Antwerp, Belgium.

47. Kaleelullah RA, Nagarajan PP. Cultivating lifestyle transformations in obstructive sleep apnea. Cureus 2021; 13(1): e12927. doi: 10.7759/cureus.12927

48. Tamplin J, Berlowitz DJ. A systematic review and meta-analysis of the effects of respiratory muscle training on pulmonary function in tetraplegia. Spinal Cord 2014; 52(3): 175–180. doi: 10.1038/sc. 2013.162.

49. Dar JA, Mujaddadi A, Moiz JA. Effects of inspiratory muscle training in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Sleep Sci 2022; 15(4): 480–489. doi: 10.5935/1984-0063.20220081.

50. Boswell-Ruys CL, Lewis CR, Gandevia SC et al. Respiratory muscle training may improve respiratory function and obstructive sleep apnoea in people with cervical spinal cord injury. Spinal Cord Ser Cases 2015; 1 : 15010. doi: 10.1038/scsandc.2015.10.

Labels
Paediatric neurology Neurosurgery Neurology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#