Impact and detection of human cytomegalovirus in oncological diseases
Authors:
A. Fried 1,2; J. Strmisková 1,2; K. Magerová 3; M. Hendrych 4; M. Bartošík 1; L. Moráňová 1
Authors‘ workplace:
Výzkumné centrum aplikované molekulární onkologie, MOÚ Brno
1; Národní centrum pro výzkum biomolekul, Přírodovědecká fakulta, MU Brno
2; Ústav experimentální bio logie, Přírodovědecká fakulta, MU Brno
3; I. ústav patologie, LF MU a FN u sv. Anny v Brně
4
Published in:
Klin Onkol 2025; 38(4): 254-263
Category:
Reviews
doi:
https://doi.org/10.48095/ccko2025254
Overview
Background: Human cytomegalovirus (hCMV) is a widely prevalent herpesvirus that typically remains asymptomatic in immunocompetent individuals. However, in immunocompromised patients, it can cause severe clinical complications. In the context of cancer, hCMV exhibits oncomodulatory effects, influencing tumor growth, immune response, and treatment efficacy. Growing evidence suggests that therapeutic strategies targeting hCMV could improve cancer patient prognosis. Nevertheless, detecting this virus in tumor tissue or body fluids remains challenging, with results often varying depending on the methodology used and the type of sample analyzed. Aim: This study provides a comprehensive overview of the role of hCMV in cancer. It describes the hCMV genome and the functions of its key proteins, focusing on their involvement in oncomodulation. The study thoroughly examines the mechanisms of viral interactions with cellular signaling pathways, the effects of infection and reactivation on the clinical course of cancer, and pays special attention to the impact of hCMV on glioblastoma, including studies assessing the effectiveness of antiviral therapy. Furthermore, standard diagnostic methods, including immunohistochemistry, ELISA, and polymerase chain reaction, are discussed, along with the most commonly used commercially available diagnostic kits approved for clinical practice. The study concludes by summarizing the key challenges associated with hCMV diagnosis and treatment in oncology and explores future therapeutic approaches, including the development of dendritic cell vaccines.
Keywords:
immunohistochemistry – human cytomegalovirus – Antiviral therapy – glioblastoma – clinical diagnostics
Sources
1. Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 2010; 20 (4): 202–213. doi: 10.1002/rmv.655.
2. Pantalone MR, Rahbar A, Söderberg-Naucler C et al. Valganciclovir as add-on to second-line therapy in patients with recurrent glioblastoma. Cancers 2022; 14 (8): 1958. doi: 10.3390/cancers14081958.
3. Batich KA, Mitchell DA, Healy P et al. Once, twice, three times a finding: reproducibility of dendritic cell vaccine trials targeting cytomegalovirus in glioblastoma. Clin Cancer Res 2020; 26 (20): 5297–5303. doi: 10.1158/1078-0432.CCR-20-1082.
4. Albrecht T, Rapp F. Malignant transformation of hamster embryo fibroblasts following exposure to ultraviolet--irradiated human cytomegalovirus. Virology 1973; 55 (1): 53–61. doi: 10.1016/S0042-6822 (73) 81007-4.
5. Herbein G. The human cytomegalovirus, from oncomodulation to oncogenesis. Viruses 2018; 10 (8): 408. doi: 10.3390/v10080408.
6. White MC, Wu X, Damania B. Oncogenic viruses, cancer biology, and innate immunity. Curr Opin Immun 2022; 78 : 102253. doi: 10.1016/j.coi.2022.102253.
7. Guyon J, Ahmad SH, El Baba R et al. Generation of glioblastoma in mice engrafted with human cytomegalovirus-infected astrocytes. Cancer Gene Ther 2024; 31 (7): 1070–1080. doi: 10.1038/s41417-024-00 767-7.
8. Murphy E, Rigoutsos I, Shibuya T et al. Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci U S A 2003; 100 (23): 13585–13590. doi: 10.1073/pnas.1735466100.
9. Dolan A, Cunningham C, Hector RD et al. Genetic content of wild-type human cytomegalovirus. J Gen Virol 2004; 85 (5): 1301–1312. doi: 10.1099/vir.0.79888-0.
10. Grgic I, Gorenec L. Human cytomegalovirus (HCMV) genetic diversity, drug resistance testing and prevalence of the resistance mutations: a literature review. Trop Med Infect Dis 2024; 9 (2): 49. doi: 10.3390/tropicalmed9020049.
11. Zhao Y. Functional analysis of human cytomegalovirus (HCMV) US3 and pp71. 2001 [online]. Available from: chrome-extension: //efaidnbmnnnibpcajpcglclefindmkaj/https: //etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=ohiou995293805&disposition= inline.
12. Cinatl J, Vogel JU, Kotchetkov R et al. Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiol Rev 2004; 28 (1): 59–77. doi: 10.1016/j.femsre.2003.07.005.
13. Lu DY, Qian J, Easley KA et al. Automated in situ hybridization and immunohistochemistry for cytomegalovirus detection in paraffin-embedded tissue sections. Appl Immunohistochem Mol Morphol 2009; 17 (2): 158–164. doi: 10.1097/PAI.0b013e318185d1b5.
14. Hamprecht K, Maschmann J, Jahn G et al. Cytomegalovirus transmission to preterm infants during lactation. J Clin Virol 2008; 41 (3): 198–205. doi: 10.1016/j.jcv.2007.12.005.
15. Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol 2021; 19 (12): 759–773. doi: 10.1038/s41579-021-00582-z.
16. Saffert RT, Penkert RR, Kalejta RF. Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J Virol 2010; 84 (11): 5594–5604. doi: 10.1128/jvi.00348-10.
17. Jarvis MA, Nelson JA. Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr Opin Microbiol 2002; 5 (4): 403–407. doi: 10.1016/S1369-5274 (02) 00334-X.
18. García-Bustos V, Salavert M, Blanes R et al. Current management of CMV infection in cancer patients (solid tumors). Epidemiology and therapeutic strategies. Rev Esp Quimioter 2022; 35 (Suppl 3): 74–79. doi: 10.37201/req/s03.16.2022.
19. Hebart H, Einsele H. Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 2004; 65 (5): 432–436. doi: 10.1016/j.humimm.2004.02.022.
20. Reeves MB, MacAry PA, Lehner PJ et al. Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci 2005; 102 (11): 4140–4145. doi: 10.1073/pnas.0408994102.
21. Hahn G, Jores R, Mocarski ES. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci 1998; 95 (7): 3937–3942. doi: 10.1073/pnas.95.7.3937.
22. Dupont L, Reeves MB. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol 2016; 26 (2): 75–89. doi: 10.1002/rmv.1862.
23. Nickoloff JA, Sharma N, Taylor L. Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy. Genes 2020; 11 (1): 99. doi: 10.3390/genes11010099.
24. Nickoloff JA, Sharma N, Allen CP et al. Roles of homologous recombination in response to ionizing radiation-induced DNA damage. Int J Radiat Biol 2023; 99 (6): 903–914. doi: 10.1080/09553002.2021. 1956001.
25. Merchut-Maya JM, Bartek J, Bartkova J et al. Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death Differ 2022; 29 (8): 1639–1653. doi: 10.1038/s41418-022-00 953-w.
26. Gaspar M, Shenk T. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci 2006; 103 (8): 2821–2826. doi: 10.1073/pnas.0511148103.
27. Diaz N, Minton S, Cox C et al. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 2006; 12 (1): 20–28. doi: 10.1158/1078-0432.CCR-04-1749.
28. Herbein G, Kumar A. The oncogenic potential of human cytomegalovirus and breast cancer. Front Oncol 2014; 4 : 230. doi: 10.3389/fonc.2014.00230.
29. Bai B, Wang X, Chen E et al. Human cytomegalovirus infection and colorectal cancer risk: a meta-analysis. Oncotarget 2016; 7 (47): 76735–76742. doi: 10.18632/oncotarget.12523.
30. McFaline-Figueroa JR, Wen PY. The viral connection to glioblastoma. Curr Infect Dis Rep 2017; 19 (2): 5. doi: 10.1007/s11908-017-0563-z.
31. Peredo-Harvey I, Rahbar A, Söderberg-Nauclér C. Presence of the human cytomegalovirus in glioblastomas – a systematic review. Cancers 2021; 13 (20): 5051. doi: 10.3390/cancers13205051.
32. Castillo JP, Yurochko AD, Kowalik TF. Role of human cytomegalovirus immediate-early proteins in cell growth control. J Virol 2000; 74 (17): 8028–8037. doi: 10.1128/jvi.74.17.8028-8037.2000.
33. Maussang D, Langemeijer E, Fitzsimons CP et al. The human cytomegalovirus-encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res 2009; 69 (7): 2861–2869. doi: 10.1158/0008-5472.CAN-08-2487.
34. Siew VK, Duh CY, Wang SK. Human cytomegalovirus UL76 induces chromosome aberrations. J Biomed Sci 2009; 16 (1): 107. doi: 10.1186/1423-0127-16-107.
35. Kalejta RF, Shenk T. Manipulation of the cell cycle by human cytomegalovirus. Front Biosci 2002; 7 (4): 295–306. doi: 10.2741/kalejta.
36. Zhu H, Shen Y, Shenk T. Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol 1995; 69 (12): 7960–7970. doi: 10.1128/JVI.69.12.7960-7970.1995.
37. Bego MG, St Jeor S. Human cytomegalovirus infection of cells of hematopoietic origin: HCMV-induced immunosuppression, immune evasion, and latency. Exp Hematol 2006; 34 (5): 555–570. doi: 10.1016/j.exphem.2005.11.012.
38. Klucher KM, Sommer M, Kadonaga JT et al. In vivo and in vitro analysis of transcriptional activation mediated by the human cytomegalovirus major immediate-early proteins. Mol Cell Biol 1993; 13 (2): 1238–1250. doi: 10.1128/mcb.13.2.1238-1250.1993.
39. Hagemeier C, Caswell R, Hayhurst G et al. Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO J 1994; 13 (12): 2897–2903. doi: 10.1002/j.1460-2075.1994.tb06584.x.
40. Hwang ES, Zhang Z, Cai H et al. Human cytomegalovirus IE1-72 protein interacts with p53 and inhibits p53-dependent transactivation by a mechanism different from that of IE2-86 protein. J Virol 2009; 83 (23): 12388–12398. doi: 10.1128/jvi.00304-09.
41. Daly CA, Smit MJ, Plouffe B. The constitutive activity of the viral-encoded G protein-coupled receptor US28 supports a complex signalling network contributing to cancer development. Biochem Soc Trans 2020; 48 (4): 1493–1504. doi: 10.1042/bst20190988.
42. Maussang D, Verzijl D, van Walsum M et al. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci 2006; 103 (35): 13068–13073. doi: 10.1073/pnas.0604433103.
43. Krishna BA, Miller WE, O’Connor CM. US28: HCMV’s Swiss army knife. Viruses 2018; 10 (8): 445. doi: 10.3390/v10080445.
44. Lee K, Jeon K, Kim JM et al. Downregulation of GFAP, TSP-1, and p53 in human glioblastoma cell line, U373MG, by IE1 protein from human cytomegalovirus. Glia 2005; 51 (1): 1–12. doi: 10.1002/glia.20179.
45. Castillo JP, Kowalik TF. Human cytomegalovirus immediate early proteins and cell growth control. Gene 2002; 290 (1): 19–34. doi: 10.1016/S0378-1119 (02) 00566-8.
46. Casarosa P, Bakker RA, Verzijl D et al. Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 2001; 276 (2): 1133–1137. doi: 10.1074/jbc.M008965200.
47. Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19 (4): 215–229. doi: 10.1002/rmv.615.
48. McCormick AL, Roback L, Livingston-Rosanoff D et al. The human cytomegalovirus UL36 gene controls caspase-dependent and -independent cell death programs activated by infection of monocytes differentiating to macrophages. J Virol 2010; 84 (10): 5108–5123. doi: 10.1128/jvi.01345-09.
49. Sharon-Friling R, Goodhouse J, Colberg-Poley AM et al. Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores. Proc Natl Acad Sci 2006; 103 (50): 19117–19122. doi: 10.1073/pnas.0609353103.
50. Jones BC, Logsdon NJ, Josephson K et al. Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc Natl Acad Sci 2002; 99 (14): 9404–9409. doi: 10.1073/pnas.152147499.
51. Tomtishen JP. Human cytomegalovirus tegument proteins (pp65, pp71, pp150, pp28). Virol J 2012; 9 (1): 22. doi: 10.1186/1743-422X-9-22.
52. Yang T, Liu D, Fang S et al. Cytomegalovirus and glioblastoma: a review of the biological associations and therapeutic strategies. J Clin Med 2022; 11 (17): 5221. doi: 10.3390/jcm11175221.
53. Taher C, de Boniface J, Mohammad AA et al. High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes. PLoS One 2013; 8 (2): e56795. doi: 10.1371/journal.pone.0056795.
54. Dong W, Akshjot P, Sheng J et al. 968 cytomegalovirus infection contributes to breast cancer brain metastasis through the creation of an immune-suppressive tumor microenvironment. J Immunother Cancer 2024; 12 (Suppl 2): A1084. doi: 10.1136/jitc-2024-SITC2024.0968.
55. Lakomy R, Kazda T, Selingerova I et al. Real-world evidence in glioblastoma: Stupp’s regimen after a decade. Front Oncol 2020; 10 : 840. doi: 10.3389/fonc.2020.00840.
56. Mondragon-Soto M, Rodríguez-Hernández LA, Moreno Jiménez S et al. Clinical, therapeutic, and prognostic experience in patients with glioblastoma. Cureus 2022; 14 (10): e29856. doi: 10.7759/cureus.29856.
57. Stragliotto G, Rahbar A, Solberg NW et al. Effects of valganciclovir as an add-on therapy in patients with cytomegalovirus-positive glioblastoma: a randomized, double-blind, hypothesis-generating study. Int J Cancer 2013; 133 (5): 1204–1213. doi: 10.1002/ijc.28111.
58. Liu CJ, Hu YW. Immortal time bias in retrospective analysis: is there a survival benefit in patients with glioblastoma who received prolonged treatment of adjuvant valganciclovir? Int J Cancer 2014; 135 (1): 250–251. doi: 10.1002/ijc.28664.
59. Foster H, Piper K, DePledge L et al. Human cytomegalovirus seropositivity is associated with decreased survival in glioblastoma patients. Neurooncol Adv 2019; 1 (1): vdz020. doi: 10.1093/noajnl/vdz020.
60. Rahbar A, Orrego A, Peredo I et al. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J Clin Virol 2013; 57 (1): 36–42. doi: 10.1016/j.jcv.2012.12.018.
61. Söderberg-Nauclér C, Rahbar A, Stragliotto G. Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med 2013; 369 (10): 985–986. doi: 10.1056/NEJMc1302145.
62. Goerig NL, Frey B, Korn K et al. Early mortality of brain cancer patients and its connection to cytomegalovirus reactivation during radiochemotherapy. Clin Cancer Res 2020; 26 (13): 3259–3270. doi: 10.1158/1078-0432.CCR-19-3195.
63. Filley AC, Dey M. Dendritic cell based vaccination strategy: an evolving paradigm. J Neurooncol 2017; 133 (2): 223–235. doi: 10.1007/s11060-017-2446-4.
64. Lynes J, Sanchez V, Dominah G et al. Current options and future directions in immune therapy for glioblastoma. Front Oncol 2018; 8 : 578. doi: 10.3389/fonc.2018.00578.
65. Mitchell DA, Batich KA, Gunn MD et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 2015; 519 (7543): 366–369. doi: 10.1038/nature14320.
66. Batich KA, Reap EA, Archer GE et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin Cancer Res 2017; 23 (8): 1898–1909. doi: 10.1158/1078-0432.Ccr-16-2057.
67. Razonable RR, Inoue N, Pinninti SG et al. Clinical diag - nostic testing for human cytomegalovirus infections. J Infect Dis 2020; 221 (Suppl 1): S74–S85. doi: 10.1093/infdis/jiz601.
68. Gliga S, Fiedler M, Dornieden T et al. Comparison of three cellular assays to predict the course of CMV infection in liver transplant recipients. Vaccines 2021; 9 (2): 88. doi: 10.3390/vaccines9020088.
69. The TH, van der Bij W, van den Berg AP et al. Cytomegalovirus antigenemia. Rev Infect Dis 1990; 12 (Suppl 7): S737–S744. doi: 10.1093/clinids/12.Supplement_ 7.S737.
70. Michaelides A, Facey D, Spelman D et al. HCMV DNA detection and quantitation in the plasma and PBL of lung transplant recipients: COBAS Amplicor HCMV monitor test versus in-house quantitative HCMV PCR. J Clin Virol 2003; 28 (2): 111–120. doi: 10.1016/S1386-6532 (02) 00272-X.
71. Gouarin S, Vabret A, Gault E et al. Quantitative analysis of HCMV DNA load in whole blood of renal transplant patients using real-time PCR assay. J Clin Virol 2004; 29 (3): 194–202. doi: 10.1016/S1386-6532 (03) 00124-0.
72. Tafvizi F, Fard ZT. Detection of human cytomegalovirus in patients with colorectal cancer by nested-PCR. Asian Pac J Cancer Prev 2014; 15 (3): 1453–1457. doi: 10.7314/apjcp.2014.15.3.1453.
73. Wolmer-Solberg N, Baryawno N, Rahbar A et al. Frequent detection of human cytomegalovirus in neuroblastoma: a novel therapeutic target? Int J Cancer 2013; 133 (10): 2351–2361. doi: 10.1002/ijc.28265.
74. Baryawno N, Rahbar A, Wolmer-Solberg N et al. Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest 2011; 121 (10): 4043–4055. doi: 10.1172/JCI57147.
75. Yang CF, Ho HL, Lin SC et al. Detection of human cytomegalovirus in glioblastoma among Taiwanese subjects. PLoS One 2017; 12 (6): e0179366. doi: 10.1371/journal.pone.0179366.
76. Mohammad AA, Rahbar A, Lui WO et al. Detection of circulating hcmv-miR-UL112-3p in patients with glioblastoma, rheumatoid arthritis, diabetes mellitus and healthy controls. PLoS One 2014; 9 (12): e113740. doi: 10.1371/journal.pone.0113740.
77. Eurofins Viracor. Cytomegalovirus (CMV) total antibody EIA. 2025 [online]. Available from: https: //www.eurofins-viracor.com/test-menu/30809-cytomegalovirus-cmv-total-antibody-eia/.
78. BioVendor Group. CLIA CMV IgG. 2021 [online]. Available from: https: //www.clia.biovendor.group/catalogue-of-parameters/clia-cmv-igg.
79. CTK Biotech. CMV IgG/IgM rapid test. 2025 [online]. Available from: https: //ctkbiotech.com/product/cmv-igg-igm-rapid-test/.
80. Diasorin. LIAISON® cytomegalovirus (CMV) diagnostic solution. 2025 [online]. Available from: https: //int.diasorin.com/en/immunodiagnostics/infectious-diseases/cytomegalovirus.
81. Altona Diagnostics. RealStar® CMV PCR Kit 1.0. 2025 [online]. Available from: https: //altona-diagnostics.com/product/realstar-cmv-pcr-kit-1-0/.
82. GeneProof. GeneProof® cytomegalovirus (CMV) PCR kit – (IVDR). 2025 [online]. Available from: https: //www.geneproof.com/cs-cs/geneproof-r-cytomegalovirus-cmv-pcr-kit-ivdr/p6912.
83. Roche Diagnostics. Cobas® CMV. 2025 [online]. Available from: https: //diagnostics.roche.com/global/en/products/params/cobas-cmv.html#productInfo.
84. Abbott: Molecular Diagnostics. Abbott realtime CMV. 2025 [online]. Available from: https: //www.molecular.abbott/us/en/products/infectious-disease/realtime-cmv.
85. Hologic. Aptima® CMV quant assay. 2025 [online]. Available from: https: //www.hologic.com/hologic-products/molecular-diagnostics/aptima-cmv-quant-assay#4257225834-452551118.
86. Qiagen. QuantiFERON-CMV kits. 2025 [online]. Available from: https: //www.qiagen.com/gb/products/diagnostics-and-clinical-research/transplant/quantiferon-transplant/quantiferon-cmv-assay.
87. Immudex. Dextramer® CMV kit – in vitro diagnostics. 2025 [online]. Available from: https: //www.immudex.com/products/clinical-reagents/dextramer-cmv-kit-in-vitro-diagnostics/?utm_source=google&utm_medium=cpc&utm_campaign=21117077663&utm_term=169843039868&gad_source=1&gclid=EAIaI QobChMIq-ft2e7nhwMVPpCDBx2rLA5wEAAYAiAAEgI-V_D_BwE.
88. Mikrogen Diagnostik. T-Track® CMV. 2025 [online]. Available from: https: //www.mikrogen.de/en/products-automation/product-finder/t-trackr-cmv.
89. Mills AM, Guo FP, Copland AP et al. A comparison of CMV detection in gastrointestinal mucosal biopsies using immunohistochemistry and PCR performed on formalin-fixed, paraffin-embedded tissue. Am J Surg Pathol 2013; 37 (7): 995–1000. doi: 10.1097/PAS.0b013e31827fcc33.
90. Kotton CN, Kumar D, Caliendo AM et al. Updated International Consensus Guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation 2013; 96 (4): 333–360. doi: 10.1097/TP.0b013e31829df29d.
91. Razonable RR, Humar A. Cytomegalovirus in solid organ transplant recipients – Guidelines of the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33 (9): e13512. doi: 10.1111/ctr.13512.
92. Baniak N, Kanthan R. Cytomegalovirus colitis: an uncommon mimicker of common colitides. Arch Pathol Lab Med 2016; 140 (8): 854–858. doi: 10.5858/arpa.2015-0176-RS.
93. Pritt BS, Aubry MC. Histopathology of viral infections of the lung. Semin Diagn Pathol 2017; 34 (6): 510–517. doi: 10.1053/j.semdp.2017.06.005.
94. Baumgarten P, Michaelis M, Rothweiler F et al. Human cytomegalovirus infection in tumor cells of the nervous system is not detectable with standardized pathologico-virological diagnostics. Neuro Oncol 2014; 16 (11): 1469–1477. doi: 10.1093/neuonc/nou167.
95. Stone RA, Lin T, Laties AM et al. Retinal dopamine and form-deprivation myopia. Proc Natl Acad Sci 1989; 86 (2): 704–706. doi: 10.1073/pnas.86.2.704.
96. Libard S, Popova SN, Amini RM et al. Human cytomegalovirus tegument protein pp65 is detected in all intra - and extra-axial brain tumours independent of the tumour type or grade. PLoS One 2014; 9 (9): e108861. doi: 10.1371/journal.pone.0108861.
97. Lucas KG, Bao L, Bruggeman R et al. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neurooncol 2011; 103 (2): 231–238. doi: 10.1007/s11060-010-0383-6.
98. Söderberg-Nauclér C. New mechanistic insights of the pathogenicity of high-risk cytomegalovirus (CMV) strains derived from breast cancer: hope for new cancer therapy options. EBioMedicine 2022; 81 : 104103. doi: 10.1016/j.ebiom.2022.104103.
99. El Shazly DF, Bahnassey AA, Omar OS et al. Detection of human cytomegalovirus in malignant and benign breast tumors in Egyptian women. Clin Breast Cancer 2018; 18 (4): e629–e642. doi: 10.1016/j.clbc.2017.10.018.
100. Taher C, Frisk G, Fuentes S et al. High prevalence of human cytomegalovirus in brain metastases of patients with primary breast and colorectal cancers. Transl Oncol 2014; 7 (6): 732–740. doi: 10.1016/j.tranon.2014.09.008.
101. Samanta M, Harkins L, Klemm K et al. High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 2003; 170 (3): 998–1002. doi: 10.1097/01.ju.0000080263.46164.97.
102. Harkins L, Volk AL, Samanta M et al. Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 2002; 360 (9345): 1557–1563. doi: 10.1016/S0140-6736 (02) 11524-8.
103. Melnick M, Sedghizadeh PP, Allen CM et al. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp Mol Pathol 2012; 92 (1): 118–125. doi: 10.1016/j.yexmp.2011.10.011.
104. Yin M, Chen A, Zhao F et al. Detection of human cytomegalovirus in patients with epithelial ovarian cancer and its impacts on survival. Infect Agent Cancer 2020; 15 (1): 23. doi: 10.1186/s13027-020-00289-5.
105. Carlson JW, Rådestad AF, Söderberg-Naucler C et al. Human cytomegalovirus in high grade serous ovarian cancer possible implications for patients survival. Medicine 2018; 97 (4): e9685. doi: 10.1097/md.0000000000009685.
106. Rahbar A, Pantalone MR, Religa P et al. Evidence of human cytomegalovirus infection and expression of 5-lipoxygenase in borderline ovarian tumors. J Med Virol 2021; 93 (6): 4023–4027. doi: 10.1002/jmv.26664.
107. Price RL, Harkins L, Chiocca EA et al. Human cytomegalovirus is present in alveolar soft part sarcoma. Appl Immunohistochem Mol Morphol 2017; 25 (9): 615–619. doi: 10.1097/pai.0000000000000354.
108. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022; 12 (1): 31–46. doi: 10.1158/2159-8290.CD-21-1059.
109. Weber F. Antiviral innate immunity: introduction. Encyclopedia Virol 2021; 577–583. doi: 10.1016/B978-0-12-809633-8.21290-9.
110. Komarova NL, Barnes E, Klenerman P et al. Boosting immunity by antiviral drug therapy: a simple relationship among timing, efficacy, and success. Proc Natl Acad Sci 2003; 100 (4): 1855–1860. doi: 10.1073/pnas.0337483100.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology

2025 Issue 4
Most read in this issue
- Senzory budoucnosti – elektrochemie jako nástroj pro detekci onkovirů a jiných biomarkerů
- Impact and detection of human cytomegalovirus in oncological diseases
- Integrative medicine in oncology – between science, ideology, and pragmatism
- From traditional Chinese medicine to molecular oncology – pleiotropic effects of tauroursodeoxycholic acid