#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

From traditional Chinese medicine to molecular oncology –⁠ pleiotropic effects of tauroursodeoxycholic acid


Authors: B. Vavrušáková 1,2;  R. Bartošová 1,2;  M. Svoboda 1;  L. Moráň 1,2
Authors‘ workplace: RECAMO, Masarykův onkologický ústav, Brno 1;  Lékařská fakulta, Masarykova univerzita, Brno 2
Published in: Klin Onkol 2025; 38(4): 270-282
Category: Reviews
doi: https://doi.org/10.48095/ccko2025270

Overview

Background: Tauroursodeoxycholic acid (TUDCA) is a naturally occurring hydrophilic bile acid in the human body. Its therapeutic effects have been recognized in traditional Chinese medicine since ancient times and continue to be used in contemporary Western medicine. TUDCA is classified as a secondary bile acid and is formed by conjugating ursodeoxycholic acid (UDCA) with taurine. Due to its hepatoprotective properties and ability to promote bile production and flow, UDCA has been approved by the US Food and Drug Administration (FDA) for the treatment of primary biliary cholangitis. TUDCA was originally used in the treatment of liver disease, but according to recent findings of current research, TUDCA has therapeutic potential beyond the hepatobiliary area. Purpose: In this paper, we aim to summarize the latest findings on the therapeutic potential of TUDCA in a broader clinical context. New findings show that TUDCA finds use not only in the treatment of hepatic disorders, but also in the treatment of cancer, neurodegenerative and cardiovascular diseases, gastrointestinal dysfunctions and glucose metabolism disorders. Due to its multifunctional effects, TUDCA appears to be a promising substance with the potential to become an important part of modern medicine in the treatment of diverse pathological conditions.

Keywords:

Neurodegenerative diseases – liver diseases – cancer – tauroursodeoxycholic acid – TUDCA – endoplasmic reticulum stress – metabolic diseases – immune function


Sources

1. Sato R. Recent advances in regulating cholesterol and bile acid metabolism. Biosci Biotechnol Biochem 2020; 84 (11): 2185–2192. doi: 10.1080/09168451.2020.1793658.

2. Romero-Ramirez L, Nieto-Sampedro M, Yanguas-Casas N. Tauroursodeoxycholic acid: more than just a neuroprotective bile conjugate. Neural Regen Res 2017; 12 (1): 62–63. doi: 10.4103/1673-5374.198979.

3. Angulo P. Use of ursodeoxycholic acid in patients with liver disease. Curr Gastroenterol Rep 2002; 4 (1): 37–44. doi: 10.1007/s11894-002-0036-9.

4. Vang S, Longley K, Steer CJ et al. The unexpected uses of urso -⁠ and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob Adv Health Med 2014; 3 (3): 58–69. doi: 10.7453/gahmj.2014.017.

5. Zangerolamo L, Solon C, Soares GM et al. Energy homeostasis deregulation is attenuated by TUDCA treatment in streptozotocin-induced Alzheimer‘s disease mice model. Sci Rep 2021; 11 (1): 18114. doi: 10.1038/s41598-021-97624-6.

6. Cortez L, Sim V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion 2014; 8 (2): 197–202. doi: 10.4161/pri.28938.

7. Lepercq P, Gérard P, Béguet F et al. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces. FEMS Microbiol Lett 2004; 235 (1): 65–72. doi: 10.1016/j.femsle.2004.04.011.

8. McMillin M, DeMorrow S. Effects of bile acids on neurological function and disease. FASEB J 2016; 30 (11): 3658–3668. doi: 10.1096/fj.201600275R.

9. Li J, Huang Z, Jin Y et al. Neuroprotective effect of tauroursodeoxycholic acid (TUDCA) on in vitro and in vivo models of retinal disorders: a systematic review. Curr Neuropharmacol 2024; 22 (8): 1374–1390. doi: 10.2174/1570159X21666230907152207.

10. Daruich A, Picard E, Boatright JH et al. Review: the bile acids urso -⁠ and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Mol Vis 2019; 25 : 610–624.

11. Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M et al. TUDCA: an agonist of the bile acid receptor GPBAR1/TGR5 with anti-inflammatory effects in microglial cells. J Cell Physiol 2017; 232 (8): 2231–2245. doi: 10.1002/jcp.25742.

12. Wu X, Li JY, Lee A et al. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight 2020; 5 (14): e132400. doi: 10.1172/jci.insight.132400.

13. Dicks N, Gutierrez K, Currin L et al. Tauroursodeoxycholic acid acts via TGR5 receptor to facilitate DNA damage repair and improve early porcine embryo development. Mol Reprod Dev 2020; 87 (1): 161–173. doi: 10.1002/mrd.23305.

14. Vettorazzi JF, Kurauti MA, Soares GM et al. Bile acid TUDCA improves insulin clearance by increasing the expression of insulin-degrading enzyme in the liver of obese mice. Sci Rep 2017; 7 (1): 14876. doi: 10.1038/s41598-017-13974-0.

15. Studer E, Zhou X, Zhao R et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 2012; 55 (1): 267–276. doi: 10.1002/hep.24681.

16. Gohlke H, Schmitz B, Sommerfeld A et al. Alpha5 beta1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology 2013; 57 (3): 1117–1129. doi: 10.1002/hep.25992.

17. Wang H, Guo Y, Han W et al. Tauroursodeoxycholic acid improves nonalcoholic fatty liver disease by regulating gut microbiota and bile acid metabolism. J Agric Food Chem 2024; 72 (36): 20194–20210. doi: 10.1021/acs.jafc.4c04630.

18. Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci 2009; 122 (Pt 2): 159–163. doi: 10.1242/jcs.018093.

19. Rocha LA, Learmonth DA, Sousa RA et al. Alphavbeta3 and alpha5beta1 integrin-specific ligands: from tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine? Biotechnol Adv 2018; 36 (1): 208–227. doi: 10.1016/j.biotechadv.2017.11.004.

20. Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and protein conformational diseases. Cold Spring Harb Perspect Biol 2019; 11 (8): a033928. doi: 10.1101/cshperspect.a033928.

21. Billman GE. Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology. Front Physiol 2020; 11 : 200. doi: 10.3389/fphys.2020.00200.

22. Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 2016; 7 (6): e2253. doi: 10.1038/cddis.2016.105.

23. Iqbal MJ, Kabeer A, Abbas Z et al. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal 2024; 22 (1): 7. doi: 10.1186/s12964-023-01398-5.

24. Chen X, Shi C, He M et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8 (1): 352. doi: 10.1038/s41392-023-01570-w.

25. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020; 21 (8): 421–438. doi: 10.1038/s41580-020-0250-z.

26. Spencer BG, Finnie JW. The role of endoplasmic reticulum stress in cell survival and death. J Comp Pathol 2020; 181 : 86–91. doi: 10.1016/j.jcpa.2020.10.006.

27. Sadeghipour MM, Torabizadeh SA, Karimabad MN. The Glucose-Regulated Protein78 (GRP78) in the Unfolded Protein Response (UPR) pathway: a potential therapeutic target for breast cancer. Anticancer Agents Med Chem 2023; 23 (5): 505–524. doi: 10.2174/1871520622666220823094350.

28. Oakes SA. Endoplasmic reticulum proteostasis: a key checkpoint in cancer. Am J Physiol Cell Physiol 2017; 312 (2): C93–C102. doi: 10.1152/ajpcell.00266. 2016.

29. Chee YH, Samali A, Robinson CM. Unfolded protein response at the cross roads of tumourigenesis, oxygen sensing and drug resistance in clear cell renal cell carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877 (6): 188814. doi: 10.1016/j.bbcan.2022.188814.

30. Zhang S, Wang K, Zhu X et al. The unfolded protein response and the biology of uveal melanoma. Biochimie 2022; 197 : 9–18. doi: 10.1016/j.biochi.2022.01.017.

31. Seo B, Coates DE, Lewis J et al. Unfolded protein response is involved in the metabolic and apoptotic regulation of oral squamous cell carcinoma. Pathology 2022; 54 (7): 874–881. doi: 10.1016/j.pathol.2022.04.003.

32. Salvagno C, Mandula JK, Rodriguez PC et al. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 2022; 8 (11): 930–943. doi: 10.1016/j.trecan.2022.06.006.

33. Cherubini A, Zito E. ER stress as a trigger of UPR and ER-phagy in cancer growth and spread. Front Oncol 2022; 12 : 997235. doi: 10.3389/fonc.2022.997235.

34. Varone E, Decio A, Chernorudskiy A et al. The ER stress response mediator ERO1 triggers cancer metastasis by favoring the angiogenic switch in hypoxic conditions. Oncogene 2021; 40 (9): 1721–1736. doi: 10.1038/s41388-021-01659-y.

35. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 2021; 21 (2): 71–88. doi: 10.1038/s41568-020-00312-2.

36. Markouli M, Strepkos D, Papavassiliou AG et al. Targeting of endoplasmic reticulum (ER) stress in gliomas. Pharmacol Res 2020; 157 : 104823. doi: 10.1016/j.phrs.2020.104823.

37. Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer‘s disease. J Mol Med 2020; 98 (5): 633–650. doi: 10.1007/s00109-020-01904-z.

38. Shi Z, Yu X, Yuan M et al. Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci Rep 2019; 9 (1): 3210. doi: 10.1038/s41598-019-39547-x.

39. Liu J, Xiao M, Li J et al. Activation of UPR signaling pathway is associated with the malignant progression and poor prognosis in prostate cancer. Prostate 2017; 77 (3): 274–281. doi: 10.1002/pros.23264.

40. Cai Y, Arikkath J, Yang L et al. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 2016; 12 (2): 225–244. doi: 10.1080/15548627.2015.1121360.

41. Rozpedek W, Pytel D, Mucha B et al. The role of the PERK/eIF2alpha/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med 2016; 16 (6): 533–544. doi: 10.2174/1566524016666160523143937.

42. Drake TM, Ritchie JE, Kanthou C et al. Targeting the endoplasmic reticulum mediates radiation sensitivity in colorectal cancer. Exp Mol Pathol 2015; 98 (3): 532–539. doi: 10.1016/j.yexmp.2015.03.032.

43. Dandage R, Bandyopadhyay A, Jayaraj GG et al. Classification of chemical chaperones based on their effect on protein folding landscapes. ACS Chem Biol 2015; 10 (3): 813–820. doi: 10.1021/cb500798y.

44. Omura T, Asari M, Yamamoto J et al. Sodium tauroursodeoxycholate prevents paraquat-induced cell death by suppressing endoplasmic reticulum stress responses in human lung epithelial A549 cells. Biochem Biophys Res Commun 2013; 432 (4): 689–694. doi: 10.1016/j.bbrc.2013.01.131.

45. Beuers U. Beta1 integrin is a long-sought sensor for tauroursodeoxycholic acid. Hepatology 2013; 57 (3): 867–869. doi: 10.1002/hep.26228.

46. Liu JY, Wang Y, Guo Y et al. Tauroursodeoxycholic acid targets HSP90 to promote protein homeostasis and extends healthy lifespan. Sci China Life Sci 2025; 68 (2): 416–430. doi: 10.1007/s11427-024-2717-6.

47. Lee J, Jeon BS, Kang S et al. Protective effects of tauroursodeoxycholate against radiation-induced intestinal injury in a mouse model. Biochem Biophys Res Commun 2024; 724 : 150226. doi: 10.1016/j.bbrc.2024. 150226.

48. Song G, Weng F, Zou B et al. Potential therapeutic action of tauroursodeoxycholic acid against cholestatic liver injury via hepatic Fxr/Nrf2 and CHOP-DR5-caspase-8 pathway. Clin Sci 2023; 137 (7): 561–577. doi: 10.1042/CS20220674.

49. Vandewynckel YP, Laukens D, Devisscher L et al. Tauroursodeoxycholic acid dampens oncogenic apoptosis induced by endoplasmic reticulum stress during hepatocarcinogen exposure. Oncotarget 2015; 6 (29): 28011–28025. doi: 10.18632/oncotarget.4377.

50. Arai Y, Choi B, Kim BJ et al. Tauroursodeoxycholic Acid (TUDCA) counters osteoarthritis by regulating intracellular cholesterol levels and membrane fluidity of degenerated chondrocytes. Biomater Sci 2019; 7 (8): 3178–3189. doi: 10.1039/c9bm00426b.

51. Üner AK, Okan A, Akyüz E et al. Tauroursodeoxycholic Acid (TUDCA) regulates inflammation and hypoxia in autonomic tissues of rats with seizures. Cell Mol Biol 2023; 68 (12): 104–111. doi: 10.14715/cmb/2022.68.12.19.

52. Kim SH, Kim JW, Koh SJ et al. Tauroursodeoxycholic acid inhibits nuclear factor kappa B signaling in gastric epithelial cells and ameliorates gastric mucosal damage in mice. Korean J Gastroenterol 2022; 79 (4): 161–169. doi: 10.4166/kjg.2022.003.

53. Wu S, Romero-Ramirez L, Mey J. Taurolithocholic acid but not tauroursodeoxycholic acid rescues phagocytosis activity of bone marrow-derived macrophages under inflammatory stress. J Cell Physiol 2022; 237 (2): 1455–1470. doi: 10.1002/jcp.30619.

54. Kim YH, Kim JH, Kim BG et al. Tauroursodeoxycholic acid attenuates colitis-associated colon cancer by inhibiting nuclear factor kappaB signaling. J Gastroenterol Hepatol 2019; 34 (3): 544–551. doi: 10.1111/jgh.14526.

55. Yu S, Gu X, Zheng Q et al. Tauroursodeoxycholic acid ameliorates renal injury induced by COL4A3 mutation. Kidney Int 2024; 106 (3): 433–449. doi: 10.1016/j.kint.2024.04.015.

56. Zhang GH, Kai JY, Chen MM et al. Downregulation of XBP1 decreases serous ovarian cancer cell viability and enhances sensitivity to oxidative stress by increasing intracellular ROS levels. Oncol Lett 2019; 18 (4): 4194–4202. doi: 10.3892/ol.2019.10772.

57. Meng F, Song J, Huang X et al. Inhibiting endoplasmic reticulum stress alleviates perioperative neurocognitive disorders by reducing neuroinflammation mediated by NLRP3 inflammasome activation. CNS Neurosci Ther 2024; 30 (10): e70049. doi: 10.1111/cns.70049.

58. Mohamed NA, Ithmil MT, Elkady AI et al. Tauroursodeoxycholic Acid (TUDCA) Relieves Streptozotocin (STZ) -induced diabetic rat model via modulation of lipotoxicity, oxidative stress, inflammation, and apoptosis. Int J Mol Sci 2024; 25 (13): 6922. doi: 10.3390/ijms25136922.

59. Naama M, Bel S. Autophagy-ER stress crosstalk controls mucus secretion and susceptibility to gut inflammation. Autophagy 2023; 19 (11): 3014–3016. doi: 10.1080/15548627.2023.2228191.

60. Raines LN, Zhao H, Wang Y et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat Immunol 2022; 23 (3): 431–445. doi: 10.1038/s41590-022-01145-x.

61. Mahadevan NR, Rodvold J, Sepulveda H et al. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci U S A 2011; 108 (16): 6561–6566. doi: 10.1073/pnas.1008942108.

62. Patel S, Pangarkar A, Mahajan S et al. Therapeutic potential of endoplasmic reticulum stress inhibitors in the treatment of diabetic peripheral neuropathy. Metab Brain Dis 2023; 38 (6): 1841–1856. doi: 10.1007/s11011-023-01239-x.

63. Rufo N, Yang Y, De Vleeschouwer S et al. The „yin and yang“ of unfolded protein response in cancer and immunogenic cell death. Cells 2022; 11 (18): 2899. doi: 10.3390/cells11182899.

64. Vanacker H, Vetters J, Moudombi L et al. Emerging role of the unfolded protein response in tumor immunosurveillance. Trends Cancer 2017; 3 (7): 491–505. doi: 10.1016/j.trecan.2017.05.005.

65. Rufo N, Garg AD, Agostinis P. The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends Cancer 2017; 3 (9): 643–658. doi: 10.1016/j.trecan.2017.07.002.

66. Kim SJ, Ko WK, Jo MJ et al. Anti-inflammatory effect of tauroursodeoxycholic acid in RAW 264.7 macrophages, bone marrow-derived macrophages, BV2 microglial cells, and spinal cord injury. Sci Rep 2018; 8 (1): 3176. doi: 10.1038/s41598-018-21621-5.

67. Rudnicka E, Suchta K, Grymowicz M et al. Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci 2021; 22 (7): 3789. doi: 10.3390/ijms22073789.

68. Aboeldalyl S, James C, Seyam E et al. The role of chronic inflammation in polycystic ovarian syndrome –⁠ a systematic review and meta-analysis. Int J Mol Sci 2021; 22 (5): 2734. doi: 10.3390/ijms22052734.

69. Xiang Y, Wang H, Ding H et al. Hyperandrogenism drives ovarian inflammation and pyroptosis: a possible pathogenesis of PCOS follicular dysplasia. Int Immunopharmacol 2023; 125 (Pt A): 111141. doi: 10.1016/j.intimp.2023.111141.

70. Beilankouhi EAV, Sajadi MA, Alipourfard I et al. Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol Res Pract 2023; 248 : 154706. doi: 10.1016/j.prp.2023.154706.

71. Song C, Chai Z, Chen S et al. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp Mol Med 2023; 55 (4): 681–691. doi: 10.1038/s12276-023-00960-y.

72. Yanguas-Casas N, Barreda-Manso MA, Nieto-Sampedro M et al. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation 2014; 11 : 50. doi: 10.1186/1742-2094-11-50.

73. Weiss N, Miller F, Cazaubon S et al. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 2009; 1788 (4): 842–857. doi: 10.1016/j.bbamem.2008.10.022.

74. Yanguas-Casas N, Barreda-Manso MA, Pérez-Rial S et al. TGFbeta contributes to the anti-inflammatory effects of tauroursodeoxycholic acid on an animal model of acute neuroinflammation. Mol Neurobiol 2017; 54 (9): 6737–6749. doi: 10.1007/s12035-016-0142-6.

75. Hua Y, Kandadi MR, Zhu M et al. Tauroursodeoxycholic acid attenuates lipid accumulation in endoplasmic reticulum-stressed macrophages. J Cardiovasc Pharmacol 2010; 55 (1): 49–55. doi: 10.1097/FJC.0b013e3181c37d86.

76. Wang X, Zhang Y, Du L et al. TUDCA alleviates atherosclerosis by inhibiting AIM2 inflammasome and enhancing cholesterol efflux capacity in macrophage. iScience 2024; 27 (6): 109849. doi: 10.1016/j.isci.2024.1 09849.

77. Chudakov DB, Shustova OA, Kotsareva OD et al. Chemical chaperone TUDCA selectively inhibits production of allergen-specific IgE in a low-dose model of allergy. Biomed Khim 2024; 70 (1): 5–14. doi: 10.18097/PBMC20247001005.

78. Sabat MJ, Wiśniewska-Becker AM, Markiewicz M et al. Tauroursodeoxycholic Acid (TUDCA) –⁠ lipid interactions and antioxidant properties of TUDCA studied in model of photoreceptor membranes. Membranes (Basel) 2021; 11 (5): 327. doi: 10.3390/membranes11050327.

79. Fonseca I, Gordino G, Moreira S et al. Tauroursodeoxycholic acid protects against mitochondrial dysfunction and cell death via mitophagy in human neuroblastoma cells. Mol Neurobiol 2017; 54 (8): 6107–6119. doi: 10.1007/s12035-016-0145-3.

80. Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res 2017; 95 (10): 2025–2029. doi: 10.1002/jnr.24042.

81. Keene CD, Rodrigues CMP, Eich T et al. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington‘s disease. Proc Natl Acad Sci U S A 2002; 99 (16): 10671–10676. doi: 10.1073/pnas.162362299.

82. Castro-Caldas M, Carvalho AN, Rodrigues E et al. Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson‘s disease. Mol Neurobiol 2012; 46 (2): 475–486. doi: 10.1007/s12035-012-8295-4.

83. Bikbova G, Oshitari T, Baba T et al. Combination of neuroprotective and regenerative agents for AGE-induced retinal degeneration: in vitro study. Biomed Res Int 2017; 2017 : 8604723. doi: 10.1155/2017/8604723.

84. Ramalho RM, Nunes AF, Dias RB et al. Tauroursodeoxycholic acid suppresses amyloid beta-induced synaptic toxicity in vitro and in APP/PS1 mice. Neurobiol Aging 2013; 34 (2): 551–561. doi: 10.1016/j.neurobiolaging.2012.04.018.

85. Pan X, Elliott CT, McGuinness B et al. Metabolomic profiling of bile acids in clinical and experimental samples of Alzheimer‘s disease. Metabolites 2017; 7 (2): 28. doi: 10.3390/metabo7020028.

86. Daruich A, Picard E, Guégan J et al. Comparative analysis of urso -⁠ and tauroursodeoxycholic acid neuroprotective effects on retinal degeneration models. Pharmaceuticals (Basel) 2022; 15 (3): 334. doi: 10.3390/ph15030334.

87. Chang Y, Yang T, Ding H et al. Tauroursodeoxycholic acid protects rat spinal cord neurons after mechanical injury through regulating neuronal autophagy. Neurosci Lett 2022; 776 : 136578. doi: 10.1016/j.neulet.2022. 136578.

88. Zucchi E, Musazzi UM, Fedele G et al. Effect of tauroursodeoxycholic acid on survival and safety in amyotrophic lateral sclerosis: a retrospective population-based cohort study. EClinicalMedicine 2023; 65 : 102256. doi: 10.1016/j.eclinm.2023.102256.

89. Lombardo FL, Alegiani SS, Mayer F et al. A randomized double-blind clinical trial on safety and efficacy of tauroursodeoxycholic acid (TUDCA) as add-on treatment in patients affected by amyotrophic lateral sclerosis (ALS): the statistical analysis plan of TUDCA-ALS trial. Trials 2023; 24 (1): 792. doi: 10.1186/s13063-023-07638-w.

90. Duarte-Silva S, Da Silva JD, Monterio-Fernandes D et al. Glucocorticoid receptor-dependent therapeutic efficacy of tauroursodeoxycholic acid in preclinical models of spinocerebellar ataxia type 3. J Clin Invest 2024; 134 (5): e162246. doi: 10.1172/JCI162246.

91. Kars M, Yang L, Gregor MF et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 2010; 59 (8): 1899–1905. doi: 10.2337/db10-0308.

92. Freitas IN, da Silva JA, de Oliveira KM et al. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol 2023; 14 : 1090039. doi: 10.3389/fendo.2023.1090039.

93. Chen Y, Wu Z, Zhao S et al. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity. Sci Rep 2016; 6 : 27486. doi: 10.1038/srep27486.

94. Ajmal N, Bogart MC, Khan P et al. Emerging anti-diabetic drugs for beta-cell protection in type 1 diabetes. Cells 2023; 12 (11): 1472. doi: 10.3390/cells12111472.

95. Bronczek GA, Vettorazzi JF, Soares GM et al. The bile acid TUDCA improves beta-cell mass and reduces insulin degradation in mice with early-stage of type-1 diabetes. Front Physiol 2019; 10 : 561. doi: 10.3389/fphys.2019.00561.

96. Zangerolamo L, Carvalho M, Barssotti L et al. The bile acid TUDCA reduces age-related hyperinsulinemia in mice. Sci Rep 2022; 12 (1): 22273. doi: 10.1038/s41598-022-26915-3.

97. Zhang J, Fan Y, Zeng C et al. Tauroursodeoxycholic acid attenuates renal tubular injury in a mouse model of type 2 diabetes. Nutrients 2016; 8 (10): 589. doi: 10.3390/nu8100589.

98. De Miguel C, Sedaka R, Kasztan M et al. Tauroursodeoxycholic acid (TUDCA) abolishes chronic high salt-induced renal injury and inflammation. Acta Physiol 2019; 226 (1): e13227. doi: 10.1111/apha.13227.

99. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19 (11): 1423–1437. doi: 10.1038/nm.3394.

100. Ravi S, Alencar AM, Arakelyan J et al. An update to hallmarks of cancer. Cureus 2022; 14 (5): e24803. doi: 10.7759/cureus.24803.

101. Mohamed E, Cao Y, Rodriguez PC. Endoplasmic reticulum stress regulates tumor growth and anti-tumor immunity: a promising opportunity for cancer immunotherapy. Cancer Immunol Immunother 2017; 66 (8): 1069–1078. doi: 10.1007/s00262-017-2019-6.

102. Almanza A, Carlesso A, Chintha C et al. Endoplasmic reticulum stress signalling –⁠ from basic mechanisms to clinical applications. FEBS J 2019; 286 (2): 241–278. doi: 10.1111/febs.14608.

103. Adams CJ, Kopp MC, Larburu N et al. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci 2019; 6 : 11. doi: 10.3389/fmolb.2019.00011.

104. Coleman OI, Lobner EM, Bierwirth S et al. Activated ATF6 induces intestinal dysbiosis and innate immune response to promote colorectal tumorigenesis. Gastroenterology 2018; 155 (5): 1539–1552.e12. doi: 10.1053/j.gastro.2018.07.028.

105. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 2017; 168 (4): 692–706. doi: 10.1016/j.cell.2016.12.004.

106. Chen X, Iliopoulos D, Zhang Q et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 2014; 508 (7494): 103–107. doi: 10.1038/nature13119.

107. Patel A, Oshi M, Yan L et al. The unfolded protein response is associated with cancer proliferation and worse survival in hepatocellular carcinoma. Cancers (Basel) 2021; 13 (17): 4443. doi: 10.3390/cancers13174443.

108. Lhomond S, Avril T, Dejeans N et al. Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol Med 2018; 10 (3): e7929. doi: 10.15252/emmm.201707929.

109. Batista A, Rodvold JJ, Xian S et al. IRE1alpha regulates macrophage polarization, PD-L1 expression, and tumor survival. PLoS Biol 2020; 18 (6): e3000687. doi: 10.1371/journal.pbio.3000687.

110. Sicari D, Fantuz M, Bellazzo A et al. Mutant p53 improves cancer cells‘ resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6. Oncogene 2019; 38 (34): 6184–6195. doi: 10.1038/s41388-019-0878-3.

111. Urra H, Aravena R, González-Johnson L et al. The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment. Trends Cancer 2024; 10 (12): 1161–1173. doi: 10.1016/j.trecan.2024.09.011.

112. Wang J, Fan P, Shen P et al. XBP1s activates METTL3/METTL14 for ER-phagy and paclitaxel sensitivity regulation in breast cancer. Cancer Lett 2024; 596 : 216846. doi: 10.1016/j.canlet.2024.216846.

113. Yan Y, He M, Zhao L et al. A novel HIF-2alpha targeted inhibitor suppresses hypoxia-induced breast cancer stemness via SOD2-mtROS-PDI/GPR78-UPR (ER) axis. Cell Death Differ 2022; 29 (9): 1769–1789. doi: 10.1038/s41418-022-00963-8.

114. Liu CY, Hsu CC, Huang TT et al. ER stress-related ATF6 upregulates CIP2A and contributes to poor prognosis of colon cancer. Mol Oncol 2018; 12 (10): 1706–1717. doi: 10.1002/1878-0261.12365.

115. Song M, Sandoval TA, Chae CS et al. IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 2018; 562 (7727): 423–428. doi: 10.1038/s41586-018-0597-x.

116. Sheshadri N, Poria DK, Sharan S et al. PERK signaling through C/EBPdelta contributes to ER stress-induced expression of immunomodulatory and tumor promoting chemokines by cancer cells. Cell Death Dis 2021; 12 (11): 1038. doi: 10.1038/s41419-021-04318-y.

117. Shi W, Chen Z, Li L et al. Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. J Cancer 2019; 10 (9): 2035–2046. doi: 10.7150/jca.29421.

118. Rodvold JJ, Chiu KT, Hiramatsu N et al. Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Sci Signal 2017; 10 (482): eaah7177. doi: 10.1126/scisignal.aah7177.

119. Zhao N, Cao J, Xu L et al. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Invest 2018; 128 (4): 1283–1299. doi: 10.1172/JCI95873.

120. Alpini G, Kanno N, Phinizy JL et al. Tauroursodeoxycholate inhibits human cholangiocarcinoma growth via Ca2+-, PKC-, and MAPK-dependent pathways. Am J Physiol Gastrointest Liver Physiol 2004; 286 (6): G973–G982. doi: 10.1152/ajpgi.00270.2003.

121. Yu H, Fu QR, Huang ZJ et al. Apoptosis induced by ursodeoxycholic acid in human melanoma cells through the mitochondrial pathway. Oncol Rep 2019; 41 (1): 213–223. doi: 10.3892/or.2018.6828.

122. Park GY, Han YK, Han JY et al. Tauroursodeoxycholic acid reduces the invasion of MDA-MB-231 cells by modulating matrix metalloproteinases 7 and 13. Oncol Lett 2016; 12 (3): 2227–2231. doi: 10.3892/ol.2016.4842.

123. Zhang D, Zhu Y, Su Y et al., Taurochenodeoxycholic acid inhibits the proliferation and invasion of gastric cancer and induces its apoptosis. J Food Biochem 2022; 46 (3): e13866. doi: 10.1111/jfbc.13866.

124. Shekels LL, Beste JE, Ho SB. Tauroursodeoxycholic acid protects in vitro models of human colonic cancer cells from cytotoxic effects of hydrophobic bile acids. J Lab Clin Med 1996; 127 (1): 57–66. doi: 10.1016/s0022-2143 (96) 90166-3.

125. Kim SH, Chun HJ, Choi HS et al. Ursodeoxycholic acid attenuates 5-fluorouracil-induced mucositis in a rat model. Oncol Lett 2018; 16 (2): 2585–2590. doi: 10.3892/ol.2018.8893.

126. Zhao J, Hao S, Chen Y et al. Tauroursodeoxycholic acid liposome alleviates DSS-induced ulcerative colitis through restoring intestinal barrier and gut microbiota. Colloids Surf B Biointerfaces 2024; 236 : 113798. doi: 10.1016/j.colsurfb.2024.113798.

127. Shen Y, Lu C, Song Z et al. Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-beta degradation. Nat Commun 2022; 13 (1): 3419. doi: 10.1038/s41467-022-31141-6.

128. Zimber A, Chedeville A, Gespach C et al. Inhibition of proliferation and induction of monocytic differentiation on HL60 human promyelocytic leukemia cells treated with bile acids in vitro. Int J Cancer 1994; 59 (1): 71–77. doi: 10.1002/ijc.2910590115.

129. Tong B, Fu L, Hu B et al. Tauroursodeoxycholic acid alleviates pulmonary endoplasmic reticulum stress and epithelial-mesenchymal transition in bleomycin-induced lung fibrosis. BMC Pulm Med 2021; 21 (1): 149. doi: 10.1186/s12890-021-01514-6.

130. Kim SY, Kwon YW, Jung IL et al. Tauroursodeoxycholate (TUDCA) inhibits neointimal hyperplasia by suppression of ERK via PKCalpha-mediated MKP-1 induction. Cardiovasc Res 2011; 92 (2): 307–316. doi: 10.1093/cvr/ cvr219.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#