#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gastrointestinal toxicity of systemic oncology immunotherapy


Authors: J. Bureš 1,2;  D. Kohoutová 3;  M. Zavoral 1,2
Authors‘ workplace: Ústav gastrointestinální onkologie, Ústřední vojenská nemocnice − Vojenská fakultní nemocnice, Praha 1;  Interní klinika 1. LF UK a ÚVN, Ústřední vojenská nemocnice − Vojenská fakultní nemocnice, Praha 2;  The Royal Marsden NHS Foundation Trust, London, UK 3
Published in: Klin Onkol 2022; 35(5): 346-357
Category: Review
doi: https://doi.org/10.48095/ccko2022346

Overview

Background: Systemic anti-cancer immunotherapy provides a substantial progress in options of current oncology treatment. Yet, this therapeutic approach is potentially associated with a significant gastrointestinal toxicity. Aim: The purpose of this paper is to provide a comprehensive review on pathogenesis, clinical features, dia gnostics and therapy of these toxicities. Review of current knowledge: Check-point inhibitors brought a major progress in anti-cancer immunotherapy and improved significantly prognosis of several malignancies (e. g. metastatic malignant melanoma, non-small-cell lung cancer, gastric and colorectal cancers in high-risk population associated with presence of pathogenic mutations, renal cell carcinoma, squamous cell carcinoma of the head and neck and urothelial carcinoma). They include monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA4; e. g. ipilimumab, tremelimumab), programmed death-1 receptor (PD-1; e. g. pembrolizumab, nivolumab) and its ligand PD-L1 (e. gatezolizumab, avelumab). Chimeric antigen receptor (CAR) T-cell therapy is another new option for haematological malignancies and metastatic colorectal cancer. Major symptoms of gastrointestinal toxicity caused by systemic immunotherapy include diarrhoea (20–50%), entero-colitis (1–10%) and laboratory or clinical signs of hepatopathy (~10%). Anti-cancer immunotherapy can be also complicated by infections (Clostridium difficile, Mycoplasma and/ or cytomegalovirus). There is no data on other possible complications so far. However, it can be assumed that these will also include bile acid malabsorption as well as small intestinal bacterial overgrowth syndrome. Treatment of gastrointestinal complications of immunotherapy should be graded according to their severity. It includes symptomatic medications (e. g. loperamide), systemic glucocorticoids and anti-TNF monoclonal antibodies (alone or together with mycofenolate mofetil or tacrolimus in the most severe cases). Conclusions: Awareness of possible complications of systemic anti-cancer immunotherapy is crucial for patients’ safety. It is mandatory to consider immune-related adverse events, complicating infections, bile acids malabsorption and small intestinal bacterial overgrowth syndrome. Prompt proper dia gnostics and immediate vigorous therapy infl uence the outcome of patients signifi cantly. A strictly individualized approach is indispensable.

Keywords:

bile acid malabsorption – gastrointestinal toxicity – anti-cancer immunotherapy – small intestinal bacterial overgrowth syndrome


Sources
  1. Niederhuber JE, Armitage JO, Kastan MB et al (eds). Abeloff ’s clinical oncology. 6th Edition. Philadelphia: Elsevier Books 2020. ISBN 978-0-323-47674-4.
  2. Powell N, Ibraheim H, Raine T et al. British Society of Gastroenterology endorsed guidance for the management of immune checkpoint inhibitor-induced enterocolitis. Lancet Gastroenterol Hepatol 2020; 5(7): 679–697. doi: 10.1016/ S2468-1253(20)300 14-5.
  3. Ibraheim H, Baillie S, Samaan MA et al. Systematic review with meta-analysis: eff ectiveness of anti-infl ammatory therapy in immune checkpoint inhibitor-induced enterocolitis. Aliment Pharmacol Ther 2020; 52(9): 1432–1452. doi: 10.1111/ apt.15998.
  4. Dougan M, Wang Y, Rubio -Tapia A et al. AGA clinical practice update on dia gnosis and management of immune checkpoint inhibitor colitis and hepatitis: expert review. Gastroenterology 2021; 160(4): 1384–1393. doi: 10.1053/ j.gastro.2020.08.063.
  5. Petruželka L, Konopásek B. Klinická onkologie. Praha: Karolinum 2002.
  6. Adam Z, Krejčí M, Vorlíček J. Speciální onkologie. Praha: Galén 2010.
  7. Klener P. Základy klinické onkologie. Praha: Galén 2011.
  8. Petera J, Melichar B. Klinická onkologie. In: Bureš J, Horáček J, Malý J (eds). Vnitřní lékařství. Praha: Galén 2014: 684–726.
  9. Kiss I, Matějovská Kubešová H. Geriatrická onkologie. Praha: Mladá fronta 2015.
  10. Krejsek J, Andrýs C, Krčmová I. Imunologie člověka. Hradec Králové: Garamon 2016.
  11. Hucl T, Petruželka L, Kiss I et al. Základy gastrointestinální onkologie. In: Zavoral M, Bureš J, Ryska M et al. (eds). Mařatkova gastroenterologie. Praha: Karolinum 2021.
  12. Society guideline links. Management of symptoms and toxicities of anticancer therapy. [online]. Dostupné z: www.uptodate.com.
  13. Society guideline links. Management of toxicities due to checkpoint inhibitor immunotherapy. Dostupné z: www.uptodate.com.
  14. Společnost pro gastrointestinální onkologii ČLS JEP. Vzdělávací webináře, 2020–2022 [online]. Dostupné z: www.sgo-cls.cz.
  15. Česká onkologická společnost ČLS JEP. Doporučené postupy, 2022. [online]. Dostupné z: www.linkos. cz/ tags/ doporucene-postupy/ .
  16. Haanen JBAG, Carbonnel F, Robert C et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow- up. Ann Oncol 2017; 28(Suppl 4): iv119–iv142. doi: 10.1093/ annonc/ mdx225.
  17. Puzanov I, Diab A, Abdallah K et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 2017; 5(1): 95. doi: 10.1186/ s40425-017-0300-z.
  18. Hryniewicki AT, Wang C, Shatsky RA et al. Management of Immune Checkpoint Inhibitor Toxicities: A Review and Clinical Guideline for Emergency Physicians. J Emerg Med 2018; 55(4): 489–502. doi: 10.1016/ j.jemermed. 2018.07.005.
  19. Common Terminology Criteria for Adverse Events (CTCAE). Version 5.0. US Dept Health Human Services, 2017. [online]. Dostupné z: www.ctep.cancer.gov.
  20. Říhová B, Štastný M. History of immunotherapy – from Coley toxins to checkpoints of the immune reaction. Klin Onkol 2015; 28(Suppl 4): 8–14. doi: 10.14735/ amko20154S8.
  21. Shoushtari AN. Principles of cancer immunotherapy. [online]. Dostupné z: www.uptodate.com.
  22. Lakomý R, Poprach A. Side effects of modern immunotherapy and how to solve them in the clinics. Klin Onkol 2015; 28(Suppl 4): 103–114.
  23. Obermannová R. Checkpoint inhibitors in the treatment of upper gastrointestinal tract tumors. Klin Onkol 2017; 30 (Suppl 3): 50–54. doi: 10.14735/ amko20173S50.
  24. Tomášek J, Kiss I. Imunoterapie nádorů dolní části trávicí trubice. Klin Onkol 2017; 30 (Suppl 3): 62–65. doi: 10.14735/ amko20173S62.
  25. Fiala O, Šorejs O, Šustr J et al. Side effects and efficacy of immunotherapy. Klin Onkol 2020; 33(1): 8–10. doi: 10.14735/ amko20208
  26. Špaček J. Gastrointestinal toxicity of immunotherapy. Klin Onkol 2020; 33(1): 23–28. doi: 10.14735/ amko202023.
  27. Postow M. Toxicities associated with checkpoint inhibitor immunotherapy. [online]. Dostupné z: www.uptodate. com.
  28. Patel AB, Lacouture ME. Mucocutaneous toxicities associated with immune checkpoint inhibitors. [online]. Dostupné z: www.uptodate.com.
  29. Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711–723. doi: 10.1056/ NEJMoa1003466.
  30. Wolchok JD, Neyns B, Linette G et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 2010; 11(2): 155– 164. doi: 10.1016/ S1470-2045(09)70334-1.
  31. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 2012; 30(21): 2691–2697. doi: 10.1200/ JCO.2012.41.6750.
  32. Topalian SL, Sznol M, McDermott DF et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014; 32(10): 1020–1030. doi: 10.1200/ JCO.2013.53.0105.
  33. Snyder A, Makarov V, Merghoub T et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014; 371(23): 2189–2199. doi: 10.1056/ NEJM oa1406498.
  34. Larkin J, Chiarion-Sileni V, Gonzalez R et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1): 23–34. doi: 10.1056/ NEJMoa1504030.
  35. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016; 39(1): 98–106. doi: 10.1097/ COC.0000000000000239.
  36. Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev 2016; 44: 51–60. doi: 10.1016/ j.ctrv.2016.02.001.
  37. Topalian SL, Taube JM, Anders RA et al. Mechanismdriven bio markers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016; 16(5): 275– 287. doi: 10.1038/ nrc.2016.36.
  38. Weber JS, Hodi FS, Wolchok JD et al. Safety profi le of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol 2017; 35(7): 785– 792. doi: 10.1200/ JCO.2015.66.1389.
  39. Flynn M, Young K, Cunningham D et al. The evolving immunotherapeutic landscape in advanced oesophagogastric cancer. Ther Adv Med Oncol 2018; 10: 1758835918786228. doi: 10.1177/ 1758835918786 228.
  40. Motzer RJ, Penkov K, Haanen J et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380(12): 1103–1115. doi: 10.1056/ NEJMoa1816047.
  41. Larkin J, Chiarion-Sileni V, Gonzalez R et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2019; 381(16): 1535–1546. doi: 10.1056/ NEJMoa1910836.
  42. Kohoutova D, Worku D, Aziz H et al. Malignant melanoma of the gastrointestinal tract: symptoms, diagnosis, and current treatment options. Cells 2021; 10(2): 327. doi: 10.3390/ cells10020327.
  43. Puhr HC, Preusser M, Ilhan-Mutlu A. Immunotherapy for esophageal cancers: what is practice changing in 2021? Cancers (Basel) 2021; 13(18): 4632. doi: 10.3390/ cancers13184632.
  44. Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 2019; 10: 128. doi: 10.3389/ fi mmu.2019.00128.
  45. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev 2019; 34: 45–55. doi: 10.1016/ j. blre.2018.11.002.
  46. Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021; 21(3): 145–161. doi: 10.1038/ s41568- 020-00323-z.
  47. Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin 2020; 70(2): 86–104. doi: 10.3322/ caac.21596.
  48. Malikova H, Holesta M, Fialova A et al. Hypophysitis and other autoimmune complications related to immune checkpoints inhibitors’ treatment: spectrum of imaging appearances. Neuro Endocrinol Lett 2018; 39(3): 196–204.
  49. Som A, Mandaliya R, Alsaadi D et al. Immune checkpoint inhibitor-induced colitis: a comprehensive review. World J Clin Cases 2019; 7(4): 405–418. doi: 10.12998/ wjcc.v7.i4.405.
  50. Ibraheim H, Perucha E, Powell N. Pathology of immune- mediated tissue lesions following treatment with immune checkpoint inhibitors. Rheumatology (Oxford) 2019; 58(Suppl 7): vii17–vii28. doi: 10.1093/ rheumatology/ kez465.
  51. Jia XH, Geng LY, Jiang PP et al. The bio markers related to immune related adverse events caused by immune checkpoint inhibitors. J Exp Clin Cancer Res 2020; 39(1): 284. doi: 10.1186/ s13046-020-01749-x.
  52. Dahiya DS, Wani F, Guidi JC et al. Gastrointestinal adverse eff ects of immunotherapeutic agents: a systematic review. Gastroenterology Res 2020; 13(6): 227–232. doi: 10.14740/ gr1340.
  53. Jamal S, Hudson M, Fifi -Mah A et al. Immune-related adverse events associated with cancer immunotherapy: a review for the practicing rheumatologist. J Rheumatol 2020; 47(2): 166–175. doi: 10.3899/ jrheum.190084.
  54. Naidoo J, Page DB, Li BT et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 2016; 27(7): 1362. doi: 10.1093/ annonc/ mdw141.
  55. Zhou X, Yao Z, Bai H et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitor-based combination therapies in clinical trials: a systematic review and meta-analysis. Lancet Oncol 2021; 22(9): 1265–1274. doi: 10.1016/ S1470-2045(21)00333-8.
  56. Zhao L, Yang Y, Li W et al. Nivolumab-induced cytokine- release syndrome in relapsed/ refractory Hodgkin’s lymphoma: a case report and literature review. Immunotherapy 2018; 10(11): 913–917. doi: 10.2217/ imt-2018-0025.
  57. Pabla BS, Schwartz DA. Assessing severity of disease in patients with ulcerative colitis. Gastroenterol Clin North Am 2020; 49(4): 671–688. doi: 10.1016/ j.gtc.2020.08.003.
  58. Kewan T, Covut F, Ahmed R et al. Clinically signifi cant bleeding with immune checkpoint inhibitors: a retrospective cohort study. Eur J Cancer 2020; 137: 285–287. doi: 10.1016/ j.ejca.2020.07.005.
  59. Young K, Lin E, Chen E et al. Small bowel hemorrhage from check point inhibitor enteritis: a case report. BMC Gastroenterol 2021; 21(1): 345. doi: 10.1186/ s12876-021- 01915-1.
  60. Tey SK. Adoptive T-cell therapy: adverse events and safety switches. Clin Transl Immunology 2014; 3(6): e17. doi: 10.1038/ cti.2014.11.
  61. Li J, Butcher J, Mack D et al. Functional impacts of the intestinal microbio me in the pathogenesis of infl ammatory bowel disease. Infl amm Bowel Dis 2015; 21(1): 139– 153. doi: 10.1097/ MIB.0000000000000215.
  62. Jain T, Sharma P, Are AC et al. New insights into the cancer-microbio me-immune axis: decrypting a decade of discoveries. Front Immunol 2021; 12: 622064. doi: 10.3389/ fi mmu.2021.622064.
  63. Marthey L, Mateus C, Mussini C et al. Cancer immunotherapy with Anti-CTLA-4 monoclonal antibodies induces an infl ammatory bowel disease. J Crohns Colitis 2016; 10(4): 395–401. doi: 10.1093/ ecco-jcc/ jjv227.
  64. Furusawa Y, Obata Y, Hase K. Commensal microbiota regulates T cell fate decision in the gut. Semin Immunopathol 2015; 37(1): 17–25. doi: 10.1007/ s00281-014- 0455-3.
  65. Dubin K, Callahan MK, Ren B et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016; 7: 10391. doi: 10.1038/ ncomms10391.
  66. Chaput N, Lepage P, Coutzac C et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 2017; 28(6): 1368–1379. doi: 10.1093/ annonc/ mdx108.
  67. Rezasoltani S, Yadegar A, Asadzadeh Aghdaei H et al. Modulatory eff ects of gut microbio me in cancer immunotherapy: a novel paradigm for blockade of immune checkpoint inhibitors. Cancer Med 2021; 10(3): 1141–1154. doi: 10.1002/ cam4.3694.
  68. Yu ZK, Xie RL, You R et al. The role of the bacterial microbio me in the treatment of cancer. BMC Cancer 2021; 21(1): 934. doi: 10.1186/ s12885-021-08664-0.
  69. Sokol H, Pigneur B, Watterlot L et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identifi ed by gut microbio ta analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008; 105(43): 16731–16736. doi: 10.1073/ pnas.0804812105.
  70. Ferreira-Halder CV, Faria AVS, Andrade SS. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol 2017; 31(6): 643–648. doi: 10.1016/ j.bpg.2017.09.011.
  71. Quévrain E, Maubert MA, Michon C et al. Identifi - cation of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 2016; 65(3): 415–425. doi: 10.1136/ gutjnl-2014-307649
  72. Zhou L, Zhang M, Wang Y et al. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Infl amm Bowel Dis 2018; 24(9): 1926–1940. doi: 10.1093/ ibd/ izy182.
  73. Jia W, Whitehead RN, Griffi ths L et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn’s disease? FEMS Microbio l Lett 2010; 310(2): 138–144. doi: 10.1111/ j.1574-6968.2010.02057.x.
  74. Fujimoto T, Imaeda H, Takahashi K et al. Decreased abundance of Faecalibacterium prausnitzii in the gut microbio ta of Crohn’s disease. J Gastroenterol Hepatol 2013; 28(4): 613–619. doi: 10.1111/ jgh.12073.
  75. Lopez-Siles M, Duncan SH, Garcia-Gil LJ et al. Faecalibacterium prausnitzii: from microbio logy to diagnostics and prognostics. ISME J 2017; 11(4): 841–852. doi: 10.1038/ ismej.2016.176.
  76. Darnell EP, Mooradian MJ, Baruch EN et al. Immunerelated adverse events (irAEs): dia gnosis, management, and clinical pearls. Curr Oncol Rep 2020; 22(4): 39. doi: 10.1007/ s11912-020-0897-9.
  77. Fountzilas E, Lampaki S, Koliou GA et al. Real-world safety and effi cacy data of immunotherapy in patients with cancer and autoimmune disease: the experience of the Hellenic Cooperative Oncology Group. Cancer Immunol Immunother 2022; 71(2): 327–337. doi: 10.1007/ s00262-021-02985-6.
  78. Muls AC, Klimova K, Andreyev HJN. Clinical decision- making in managing changes in gastrointestinal function following cancer therapies: is experience enough? Eur J Cancer Care (England) 2018; 27(1). doi: 10.1111/ ecc.12766.
  79. Larsen HM, Borre M, Christensen P et al. Clinical evaluation and treatment of chronic bowel symptoms following cancer in the colon and pelvic organs. Acta Oncol 2019; 58(5): 776–781. doi: 10.1080/ 0284186X.2018.1562211.
  80. Gadhok R, Paulon E, Tai C et al. Gastrointestinal consequences of cancer treatment: evaluation of 10 years’ experience at a tertiary UK centre. Frontline Gastroenterol 2020; 12(6): 471–477. doi: 10.1136/ flgastro- 2020-101430.
  81. Andreyev HJN, Lalji A, Mohammed K et al. The FOCCUS study: a prospective evaluation of the frequency, severity and treatable causes of gastrointestinal symptoms during and after chemotherapy. Support Care Cancer 2021; 29(3): 1443–1453. doi: 10.1007/ s00520-020- 05610-x.
  82. Grover S, Dougan M, Tyan K et al. Vitamin D intake is associated with decreased risk of immune checkpoint inhibitor-induced colitis. Cancer 2020; 126(16): 3758–3767. doi: 10.1002/ cncr.32966.
  83. Lui RN, Chan SL. Management of gastrointestinal side effects of immune checkpoint inhibitors. Clin Gastroenterol Hepatol 2021; 19(11): 2262–2265. doi: 10.1016/ j.cgh.2021.06.038.
  84. Geukes Foppen MH, Rozeman EA, van Wilpe S et al. Immune checkpoint inhibition-related colitis: symptoms, endoscopic features, histology and response to management. ESMO Open 2018; 3(1): e000278. doi: 10.1136/ esmoopen-2017-000278.
  85. Bures J, Smajs D, Kvetina J et al. Bacteriocinogeny in experimental pigs treated with indomethacin and Escherichia coli Nissle. World J Gastroenterol 2011; 17(5): 609–617. doi: 10.3748/ wjg.v17.i5.609.
  86. Wang Y, Wiesnoski DH, Helmink BA et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med 2018; 24(12): 1804–1808. doi: 10.1038/ s41591-018-0238-9.
  87. McQuade JL, Ologun GO, Arora R et al. Gut microbiome modulation via fecal microbiota transplant to augment immunotherapy in patients with melanoma or other cancers. Curr Oncol Rep 2020; 22(7): 74. doi: 10.1007/ s11912-020-00913-y.
  88. Wanik J, Teevan C, Pepin L et al. Implementation of a bowel protocol to improve enteral nutrition and reduce clostridium diffi cile testing. Crit Care Nurse 2019; 39(6): e10–e18. doi: 10.4037/ ccn2019304.
  89. Badran O, Ouryvaev A, Baturov V et al. Cytomegalovirus pneumonia complicating immune checkpoint inhibitors-induced pneumonitis: a case report. Mol Clin Oncol 2021; 14(6): 120. doi: 10.3892/ mco.2021.2282.
  90. Bird D, Singh M. An unusual case of invasive pleuritis and miliary Mycoplasma pneumonia during check-point inhibitor therapy. Respirol Case Rep 2021; 9(9): e0813. doi: 10.1002/ rcr2.813.
  91. Sumiyoshi T, Uemura K, Aoki G et al. Increased clostridium difficile infection in the era of preoperative chemotherapy for pancreatic cancer. Pancreatology 2021; 22(2): 258–263. doi: 10.1016/ j.pan.2021.12. 009.
  92. Pitta MR, Campos FM, Monteiro AG et al. Tutorial on diarrhea and enteral nutrition: a comprehensive stepbystep approach. JPEN J Parenter Enteral Nutr 2019; 43(8): 1008–1019. doi: 10.1002/ jpen.1674.
  93. Wang D, Dong D, Wang C et al. Risk factors and intestinal microbiota: clostridioides difficile infection in patients receiving enteral nutrition at intensive care units. Crit Care 2020; 24(1): 426. doi: 10.1186/ s13054-020- 03119-7.
  94. Kelly CR, Fischer M, Allegretti JR et al. ACG Clinical Guidelines: prevention, diagnosis, and treatment of clostridioides difficile infections. Am J Gastroenterol 2021; 116(6): 1124–1147. doi: 10.14309/ ajg.0000000000001278.
  95. Inghammar M, Svanström H, Voldstedlund M et al. Proton-pump inhibitor use and the risk of community associated clostridium difficile infection. Clin Infect Dis 2021; 72(12): e1084–e1089. doi: 10.1093/ cid/ciaa1 857.
  96. Lee P, Fike D, Yang H et al. Do the types and routes of proton pump inhibitor treatments affect clostridium difficile in ICU patients? A retrospective cohort study.Expert Rev Clin Pharmacol 2021; 14(3): 399–404. doi: 10.1080/ 17512433.2021.1890582.
  97. Obrová K, Grumaz S, Remely M et al. Presence of viremia during febrile neutropenic episodes in patients undergoing chemotherapy for malignant neoplasms. Am J Hematol 2021; 96(6): 719–726. doi:10.1002/ ajh.26177.
  98. Kitagawa K, Okada H, Miyazaki S et al. Cytomegalovirus reactivation in esophageal cancer patients receiving chemoradiotherapy: a retrospective analysis. Cancer Med 2021; 10(21): 7525–7533. doi: 10.1002/ cam4. 4269.
  99. Stroh GR, Peikert T, Escalante P. Active and latent tuberculosis infections in patients treated with immune checkpoint inhibitors in a non-endemic tuberculosis area. Cancer Immunol Immunother 2021; 70(11): 3105–3111. doi: 10.1007/ s00262-021-02905-8.
  100. Kohoutová D. Malabsorpce žlučových kyselin. In: Zavoral M, Bureš J, Ryska M et al. (eds). Mařatkova gastroenterologie. Praha: Karolinum 2021.
  101. Kohoutova D, Gee C, Fleuret C et al. Bile acid malabsorption as a consequence of cancer treatment: prevalence and management in the national leading centre. UEG J 2021; 9(8): 207
  102. Gee C, Fleuret C, Wilson A et al. Bile acid malabsorption as a consequence of cancer treatment: prevalence and management in the national leading centre. Cancers 2021; 13(24): 6213. doi: 10.3390/ cancers13246 213.
  103. Walters JR, Tasleem AM, Omer OS et al. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid bio synthesis. Clin Gastroenterol Hepatol 2009; 7(11): 1189–1194. doi: 10.1016/ j.cgh.2009.04.024.
  104. Barkun AN, Love J, Gould M et al. Bile acid malabsorption in chronic diarrhea: pathophysiology and treatment. Can J Gastroenterol 2013; 27(11): 653–659. doi: 10.1155/ 2013/ 485631.
  105. Camilleri M. Bile acid diarrhea: prevalence, pathogenesis, and therapy. Gut Liver 2015; 9(3): 332–339. doi: 10.5009/ gnl14397.
  106. Fani B, Bertani L, Paglianiti I et al. Pros and cons of the SeHCAT test in bile acid diarrhea: a more appropriate use of an old nuclear medicine technique. Gastroenterol Res Pract 2018; 2018: 2097359. doi: 10.1155/ 2018/ 2097359.
  107. Vijayvargiya P, Camilleri M. Update on bile acid malabsorption: fi nally ready for prime time? Curr Gastroenterol Rep 2018; 20(3): 10. doi: 10.1007/ s11894-018- 0615-z.
  108. Lenicek M, Juklova M, Zelenka J et al. Improved HPLC analysis of serum 7alpha-hydroxycholest-4-en- 3-one, a marker of bile acid malabsorption. Clin Chem 2008; 54(6): 1087–1088. doi: 10.1373/ clinchem.2007.100 107.
  109. Lyutakov I, Ursini F, Penchev P et al. Methods for dia gnosing bile acid malabsorption: a systematic review. BMC Gastroenterol 2019; 19(1): 185. doi: 10.1186/ s12876-019-1102-1.
  110. Battat R, Duijvestein M, Vande Casteele N et al. Serum concentrations of 7-hydroxy-4-cholesten-3-one are associated with bile acid diarrhea in patients with Crohn’s disease. Clin Gastroenterol Hepatol 2019; 17(13): 2722–2730.e4. doi: 10.1016/ j.cgh.2018.11.012.
  111. Hofmann AF, Poley JR. Cholestyramine treatment of diarrhea associated with ileal resection. N Engl J Med 1969; 281(8): 397–402. doi: 10.1056/ NEJM1969082128 10801.
  112. Bays H, Dujovne C. Colesevelam HCl: a non-systemic lipid-altering drug. Expert Opin Pharmacother 2003; 4(5): 779–790. doi: 10.1517/ 14656566.4.5.779.
  113. Gupta A, Muls AC, Lalji A et al. Outcomes from treating bile acid malabsorption using a multidisciplinary approach. Support Care Cancer 2015; 23(10): 2881–2890. doi: 10.1007/ s00520-015-2653-5.
  114. Watson L, Lalji A, Bodla S et al. Management of bile acid malabsorption using low-fat dietary interventions: a useful strategy applicable to some patients with diarrhoea- predominant irritable bowel syndrome? Clin Med (London) 2015; 15(6): 536–540. doi: 10.7861/ clinmedicine. 15-6-536.
  115. Jackson A, Lalji A, Kabir M et al. The effi cacy of a lowfat diet to manage the symptoms of bile acid malabsorption – outcomes in patients previously treated for cancer. Clin Med (London) 2017; 17(5): 412–418. doi: 10.7861/ clinmedicine.17-5-412.
  116. Bures J, Cyrany J, Kohoutova D et al. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 2010; 16(24): 2978–2990. doi: 10.3748/ wjg.v16.i24.2978.
  117. Bushyhead D, Quigley EM. Small intestinal bacterial overgrowth. Gastroenterol Clin North Am 2021; 50(2): 463–474. doi: 10.1016/ j.gtc.2021.02.008.
  118. Quigley EMM, Murray JA, Pimentel M. AGA clinical practice update on small intestinal bacterial overgrowth: expert review. Gastroenterology 2020; 159(4): 1526–1532. doi: 10.1053/ j.gastro.2020.06.090.
  119. Ghoshal U, Ghoshal UC, Ranjan P et al. Spectrum and antibio tic sensitivity of bacteria contaminating the upper gut in patients with malabsorption syndrome from the tropics. BMC Gastroenterol 2003; 3: 9. doi: 10.1186/ 1471-230X-3-9.
  120. British Society of Gastroenterology. Association of Gastrointestinal Physiologists (AGIP) standardised testing protocol for hydrogen/ methane breath testing to assess small intestinal bacterial overgrowth and carbohydrate malabsorption. [online]. Dostupné z: https:/ / www. bsg.org.uk/ wp-content/ uploads/ 2019/ AGIP-Best-Practice- Statement-for-HMBT.pdf.
  121. Shah SC, Day LW, Somsouk M et al. Meta-analysis: antibio tic therapy for small intestinal bacterial overgrowth. Aliment Pharmacol Ther 2013; 38(8): 925–934. doi: 10.1111/ apt.12479.
  122. Gatta L, Scarpignato C. Systematic review with metaanalysis: rifaximin is eff ective and safe for the treatment of small intestine bacterial overgrowth. Aliment Pharmacol Ther 2017; 45(5): 604–616. doi: 10.1111/ apt.13928.
  123. Ghoshal UC. Antibio tic treatment for small intestinal bacterial overgrowth: is a cocktail better than a single? United European Gastroenterol J 2021; 9(6): 643–644. doi: 10.1002/ ueg2.12075.
  124. Bureš J. Syndrom bakteriálního přerůstání v tenkém střevě. In: Zavoral M, Bureš J, Ryska M et al. (eds). Mařatkova gastroenterologie. Praha: Karolinum 2021.
  125. Bouchoucha M, Fysekidis M, Lekhal C et al. COLIGENTA treatment of small intestinal bacterial overgrowth. Results of an open study. Dig Liver Dis 2021; 53(1): 66–71. doi: 10.1016/j.dld.2020.10.032.
Labels
Paediatric clinical oncology Surgery Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#