#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Haematotoxicity in IMRT/VMAT curatively treated anal cancer


Authors: R. Lohynská 1,4;  A. Nýdlová 2;  T. Drbohlavová 2;  E. Mazaná 1;  M. Jirkovská 2;  T. Veselský 3;  B. Malinová 2;  H. Stankušová 2
Authors‘ workplace: Onkologická klinika 1. LF UK a Thomayerova nemocnice, Praha 1;  Onkologická klinika 2. LF UK a FN Motol, Praha 2;  Oddělení lékařské fyziky, FN Motol, Praha 3;  Ústav radiační onkologie, 1. LF UK a Nemocnice Na Bulovce 4
Published in: Klin Onkol 2020; 33(4): 288-294
Category: Original Articles
doi: https://doi.org/10.14735/amko2020286

Overview

Introduction: Curative chemoradiotherapy of squamous cell carcinoma achieves long-term complete remissions in most patients and minimizing treatment toxicity becomes crucial issue. The aim of the retrospective analysis was to determine an acceptable dose to the bone marrow for radiotherapy planning not leading to increased haematological toxicity. Patients and methods: In the period 2013–2019, 40 patients with squamous cell carcinoma were curatively treated at the Department of Oncology of the University Hospital Motol using intensity modulated radiotherapy (IMRT) /volumetric modulated arc radiotherapy (VMAT) technique. Women make up 90% of the group, the average age at the time of dia­gnosis was 65 years (47–81). Chemotherapy mitomycin C and 5-fluorouracil was given to 68% of patients. The bone marrow was contoured in the Varian Eclipse planning system, version 15.6.

Results: Acute hematotoxicity (G3, 4, 5 according to Common Terminology Criteria for Adverse Events – CTCAE) was significantly associated with the concomitant chemoradiotherapy (P = 0.002) and the average dose to the bone marrow ≥ 27 Gy (P = 0.011). Late haematological toxicity was mild (maximum grade 1), asymptomatic, and no dependence of late haematotoxicity on any risk factor (age, gender, WHO performance status, bone marrow dose, CHT, BMI, smoking, stage) was proved. The overall survival at 5 years was 100% in stage I, 83% in stage II, 61% in stage III and 0% in stage IV. Local control at 5 years is 100% in stage I, 92% in stage II, 87% in stage III and 0% in stage IV. Local recurrence developed in 5% of radically treated patients. Distant metastases occurred in 8% of radically treated patients. Local recurrences or metastases occurred only during the first 2 years after the treatment.

Conclusion: Radical chemoradiotherapy in the treatment of squamous cell anal carcinoma is highly effective. IMRT/VMAT enabled to apply a sufficiently effective dose to the tumor and elective areas and reduced not only acute skin, GI and GU toxicity, but also acute haematological toxicity in cases with the dose Dmean to bone marrow lower than 27 Gy.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical, papers.

Keywords:

bone marrow – IMRT – VMAT – anal cancer – hematologic toxicity


Sources

1. Ajani JA, Winter KA, Gunderson LL et al. Fluorouracil, mitomycin, and radiotherapy vs fluorouracil, cisplatin, and radiotherapy for carcinoma of the anal canal: a randomized controlled trial. JAMA 2008; 299 (16): 1914–1921. doi: 10.1001/jama.299.16.1914.

2. James RD, Glynne-Jones R, Meadows HM et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy for treatment of squamous-cell carcinoma of the anus (ACT II): a randomised, phase 3, open-label, 2 x 2 factorial trial. Lancet Oncol 2013; 14 (6): 516–524. doi: 10.1016/S1470-2045 (13) 70086-X.

3. Peiffert D, Tournier-Rangeard L, Gerard J-P et al. Induction chemotherapy and dose intensification of the radiation boost in locally advanced anal canal carcinoma: final analysis of the randomized UNICANCER ACCORD 03 trial. J Clin Oncol 2012; 30 (16): 1941–1948. doi: 10.1200/JCO.2011.35.4837.

4. Bartelink H, Roelofsen F, Eschwege F et al. Concomitant radiotherapy and chemotherapy is superior to radio­therapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer. J Clin Oncol 1997; 15 (5): 2040–2049. doi: 10.1200/JCO.1997.15.5.2040.

5. Flam M, John M, Pajak TF et al. Role of mitomycin in combination with fluorouracil and radiotherapy, and of salvage chemoradiation in the definitive nonsurgical treatment of epidermoid carcinoma of the anal canal: results of a phase III randomized intergroup study. J Clin Oncol 1996; 14 (9): 2527–2539. doi: 10.1200/JCO.1996.14.9.2527.

6. Benson AB, Venook AP, Al-Hawary MM et al. Anal Carcinoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2018; 16 (7): 852–871. doi: 10.6004/jnccn.2018.0060.

7. Glynne-Jones R, Tan D, Hughes R et al. Squamous-cell carcinoma of the anus: progress in radiotherapy treatment. Nat Rev Clin Oncol 2016; 13 (7): 447–459. doi: 10.1038/nrclinonc.2015.218.

8. Glynne-Jones R, Nilsson PJ, Aschele C et al. Anal cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diag­nosis, treatment and follow-up. Radiother Oncol 2014; 111 (3): 330–339. doi: 10.1016/j.ejso.2014.07.030.

9. Lohynska R, Mazana E, Novakova-Jiresova A et al. Improved survival in patients with FDG-PET/CT-based radiotherapy treatment planning for squamous cell anal cancer. Neoplasma 2020; [ahead of print]. doi: 10.4149/neo_2020_191229N1350.

10. Ciombor KK, Ernst RD, Brown G. Diagnosis and diagnostic imaging of anal canal cancer. Surg Oncol Clin N Am 2017; 26 (1): 45–55. doi: 10.1016/j.soc.2016.07.002.

11. Krengli M, Milia ME, Turri L et al. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma. Radiat Oncol 2010; 5: 10. doi: 10.1186/1748-717X-5-10.

12. Cotter SE, Grigsby PW, Siegel BA et al. FDG-PET/CT in the evaluation of anal carcinoma. Int J Radiat Oncol Biol Phys 2006; 65 (3): 720–725. doi: 10.1016/j.ijrobp.2006.01.009.

13. Trautmann TG, Zuger JH. Positron emission tomography for pretreatment staging and posttreatment evaluation in cancer of the anal canal. Mol imaging Biol 2005; 7 (4): 309–313. doi: 10.1007/s11307-005-0003-6.

14. Winton E de, Heriot AG, Ng M et al. The impact of 18-fluorodeoxyglucose positron emission tomography on the staging, management and outcome of anal cancer. Br J Cancer 2009; 100 (5): 693–700. doi: 10.1038/sj.bjc.6604897.

15. Anderson C, Koshy M, Staley C et al. PET-CT fusion in radiation management of patients with anorectal tumors. Int J Radiat Oncol Biol Phys 2007; 69 (1): 155–162. doi: 10.1016/j.ijrobp.2007.02.055.

16. Nguyen BT, Joon DL, Khoo V et al. Assessing the impact of FDG-PET in the management of anal cancer. Radiother Oncol 2008; 87 (3): 376–382. doi: 10.1016/j.radonc.2008.04.003.

17. Sauter M, Vavricka SR, Keilholz G et al. Surveillance of anal carcinoma after radiochemotherapy : A retrospective analysis of 80 patients. Strahlentherapie und Onkol 2017; 193 (8): 639–647. doi: 10.1007/s00066-017-1159-0.

18. Kachnic LA, Winter K, Myerson RJ et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal. Int J Radiat Oncol Biol Phys 2013; 86 (1): 27–33. doi: 10.1016/j.ijrobp.2012.09.
023.

19. Vuong T, Kopek N, Ducruet T et al. Conformal therapy improves the therapeutic index of patients with anal canal cancer treated with combined chemotherapy and external beam radiotherapy. Int J Radiat Oncol Biol Phys 2007; 67 (5): 1394–1400. doi: 10.1016/j.ijrobp.2006.11.038.

20. Gunderson LL, Winter KA, Ajani JA et al. Long-term update of US GI intergroup RTOG 98-11 phase III trial for anal carcinoma: survival, relapse, and colostomy failure with concurrent chemoradiation involving fluorouracil/mitomycin versus fluorouracil/cisplatin. J Clin Oncol 2012; 30 (35): 4344–4351. doi: 10.1200/JCO.2012.43.8085.

21. Čihák R. Anatomie I. 3. vyd. Praha: Grada Publishing 2011: 76.

22. Hayman JA, Callahan JW, Herschtal A et al. Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys 2011; 79 (3): 847–852. doi: 10.1016/j.ijrobp.2009.11.040.

23. Rancati T, Fiorino C: Modelling radiotherapy side effects. Practical applications for planning optimisation. Boca Raton: CRC Press Taylor&Francis Group 2019:
309–335.

24. Kunos CA, Andrews SJ, Moore KN et al. Randomized phase ii trial of triapine-cisplatin-radiotherapy for locally advanced stage uterine cervix or vaginal cancers. Front Oncol 2019; 9: 1067. doi: 10.3389/fonc.2019.01067.

25. Yang FE, Vaida F, Ignacio L et al. Analysis of weekly complete blood counts in patients receiving standard fractionated partial body radiation therapy. Int J Radiat Oncol Biol Phys 1995; 33 (3): 607–619.

26. Mell LK, Sirák I, Wei L et al. Bone marrow-sparing intensity modulated radiation therapy with concurrent cisplatin for stage ib-iva cervical cancer: An international multicenter phase ii clinical trial (INTERTECC-2). Int J Radiat Oncol Biol Phys 2017; 97 (3): 536–545. doi: 10.1016/j.ijrobp.2016.11.027.

27. Lepinoy A, Lescut N, Puyraveau M et al. Evaluation of a 36 Gy elective node irradiation dose in anal cancer. Radiother Oncol 2015; 116 (2): 197–201. doi: 10.1016/j.radonc.2015.07.050.

28. Ng M, Leong T, Chander S et al. Australasian Gastrointestinal Trials Group (AGITG) contouring atlas and planning guidelines for intensity-modulated radiotherapy in anal cancer. Int J Radiat Oncol Biol Phys 2012; 83 (5): 1455–1462. doi: 10.1016/j.ijrobp.2011.12.058.

29. Marks LB, Yorke ED, Jackson A et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010; 76 (3 Suppl): S10–S19. doi: 10.1016/j.ijrobp.2009.07.1754.

30. Brooks C, Hansen VN, Riddell A et al. Proposed genitalia contouring guidelines in anal cancer intensity-modulated radiotherapy. Br J Radiol 2015; 88: 20150032. doi: 10.1259/bjr.20150032.

31. David JM, Yue Y, Blas K et al. 18F-FDG PET predicts hematologic toxicity in patients with locally advanced anal cancer treated with chemoradiation. Adv Radiat Oncol 2019; 4 (4): 613–622. doi: 10.1016/j.adro.2019.06.005.

32. Franco P, Fiandra C, Arcadipane F et al. Incorporating 18FDG-PET-defined pelvic active bone marrow in the automatic treatment planning process of anal cancer patients undergoing chemo-radiation. BMC Cancer 2017; 17 (1): 710. doi: 10.1186/s12885-017-3708-4.

33. Kachnic, Rose BS, Jee KW et al. Irradiation of FDG-PET-defined active bone marrow subregions and acute hematologic toxicity in anal cancer patients undergoing chemoradiation. Int J Radiat Oncol Biol Phys 2016; 94 (4): 747–754. doi: 10.1016/j.ijrobp.2015.12.006.

34. Kachnic LA, Tsai HK, Coen JJ et al. Dose-painted intensity-modulated radiation therapy for anal cancer: a multi-institutional report of acute toxicity and response to therapy. Int J Radiat Oncol Biol Phys 2012; 82 (1): 153–158. doi: 10.1016/j.ijrobp.2010.09.030.

35. Bazan JG, Luxton G, Mok EC et al. Normal tissue complication probability modeling for acute hematologic toxicity in patients treated with intensity-modulated radiation therapy for squamous cell carcinoma of the anal canal. Int J Radiat Oncol Biol Phys 2012; 84: 700–706. doi: 10.1016/j.ijrobp.2011.12.072.

36. Mell LK, Sirák I, Wei L et al. Bone marrow-sparing intensity modulated radiation therapy with concurrent cisplatin for stage IB-IVA cervical cancer: An international multicenter phase ii clinical trial (INTERTECC-2). Int J Radiat Oncol Biol Phys 2017; 97 (3): 536–545. doi: 10.1016/j.ijrobp.2016.11.027.

37. Liang Y, Bydder M, Yashar CM et al. Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int J Radiat Oncol Biol Phys 2013; 85 (2): 406–414. doi: 10.1016/j.ijrobp.2012.04.044.

38. Rose BS, Jee KW, Niemierko A et al. Irradiation of FDG-PET-defined active bone marrow subregions and acute hematologic toxicity in anal cancer patients undergoing chemoradiation. Int J Radiat Oncol Biol Phys 2016; 94 (4): 747–754. doi: 10.1016/j.ijrobp.2015.12.006.

39. McGuire SM, Bhatia SK, Sun W et al. Using [ (18) F]fluorothymidine imaged with positron emission tomography to quantify and reduce hematologic toxicity due to chemoradiation therapy for pelvic cancer patients. Int J Radiat Oncol Biol Phys 2016; 96 (1): 228–239. doi: 10.1016/j.ijrobp.2016.04.009.

40. Doci R, Zucali R, La Monica G, et al. Primary chemo­radiation therapy with fluorouracil and cisplatin for cancer of the anus: results in 35 consecutive patients. J Clin Oncol 1996; 14 (12): 3121–3125. doi: 10.1200/JCO.1996.14.12.3121.

41. Franco P, Arcadipane F, Ragona R et al. Volumetric modulated arc therapy (VMAT) in the combined modality treatment of anal cancer patients. Br J Radiol 2016; 89 (1060): 20150832. doi: 10.1259/bjr.20150832.

42. Milano MT, Jani AB, Farrey KJ et al. Intensity-modulated radiation therapy (IMRT) in the treatment of anal cancer: toxicity and clinical outcome. Int J Radiat Oncol Biol Phys 2005; 63 (2): 354–361. doi: 10.1016/j.ijrobp.2005.02.030.

43. Jones CM, Adams R, Downing A et al. Toxicity, tolerability, and compliance of concurrent capecitabine or 5-fluorouracil in radical management of anal cancer with single-dose mitomycin-c and intensity modulated radiation therapy: evaluation of a national cohort. Int J Radiat Oncol Biol Phys 2018; 101 (5): 1202–1211. doi: 10.1016/j.ijrobp.2018.04.033.

44. Goodman KA, Julie D, Cercek A et al. Capecitabine with mitomycin reduces acute hematologic toxicity and treatment delays in patients undergoing definitive chemoradiation using intensity modulated radiation therapy for anal cancer. Int J Radiat Oncol Biol Phys 2017; 98 (5): 1087–1095. doi: 10.1016/j.ijrobp.2017.03.022.

45. Wo JY, Plastaras JP, Metz JM et al. Pencil beam scanning proton beam chemoradiation therapy with 5-fluorouracil and mitomycin-c for definitive treatment of carcinoma of the anal canal: a multi-institutional pilot feasibility study. Int J Radiat Oncol Biol Phys 2019; 105 (1): 90–95. doi: 10.1016/j.ijrobp.2019.04.040.

46. Li N, Noticewala SS, Williamson CW et al. Feasibility of atlas-based active bone marrow sparing intensity modulated radiation therapy for cervical cancer. Radiother Oncol 2017; 123 (2): 325–330. doi: 10.1016/j.radonc.2017.02.017.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#