#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Is There a Benefit of HER2-Positive Breast Cancer Subtype Determination in Clinical Practice?


Authors: I. Kolářová 1-3;  J. Vaňásek 1-4;  K. Odrážka 1-7;  L. Dušek 8;  Z. Šinkorová 4;  A. Hlávka 1,3;  J. Štuk 1,3;  J. Stejskal 1,3;  D. Dvořáková 1;  L. Sákra 9;  J. Mergancová 9;  Z. Vilasová 1,2
Authors‘ workplace: Komplexní onkologické centrum Pardubického kraje, Multiscan, s. r. o. 1;  Fakulta zdravotnických studií Pardubice, Univerzita Pardubice 2;  Oddělení klinické a radiační onkologie, Pardubická nemocnice, Nemocnice Pardubického kraje, a. s. 3;  Katedra radiobiologie, Fakulta vojenského zdravotnictví, Univerzita obrany, Brno 4;  1. LF UK Praha 5;  3. LF UK Praha 6;  Katedra radiační onkologie, Institut postgraduálního vzdělávání ve zdravotnictví, Praha 7;  Institut biostatistiky a analýz, LF MU, Brno 8;  Chirurgická klinika, Pardubická nemocnice, Nemocnice Pardubického kraje, a. s. 9
Published in: Klin Onkol 2019; 32(1): 25-30
Category: Review
doi: https://doi.org/10.14735/amko2019

Overview

Background:

Breast cancer (BC) with increased expression of human epidermal growth factor receptor 2 with tyrosine kinase activity (HER2+) is a clinically and bio­logically heterogeneous dis­ease. In terms of gene expression, there are four major molecular subtypes – Luminal A, Luminal B, HER2-enriched (HER2-E), and Basal-like. The most common subtype is HER2-E (50–60%). In hormone-dependent (HR+) HER2-positive tumors, the subgroup HER2-E represents 40–50% of cases; others are luminal A and B subtypes.

Purpose:

The aim of this review is to provide information on the significance of the distribution of HER2-positive tumors accord­ing to subtype, which is considered a predictive parameter for guid­ing treatment decisions. For example, HER2-E subtype is characterized by a higher probability of achiev­ing complete pathological remission when treated with chemother­apy and antiHER2 ther­apy, and it is thought that it could be treated us­ing a dual HER2 blockade without chemother­apy. Currently, triple-positive tumors, a specific subtype of breast cancer characterized by HER2+ and HR+, are more often subjects of interest. Their unique bio­logical properties are due to complex interactions between HER2 and estrogen receptor (ER) signalling, which result in lower effectiveness of endocrine ther­apy in these patients than in HR+ and HER2-negative patients and, at the same time, the ER positivity in HER2+ tumors can result in resistance to antiHER2 ther­apy. This type of BC is a non-homogeneous group where the impacts of HER2 positivity on tumor malignant behavior and activity of the estrogen-driven signal­ing pathway are inconsistent. Current studies focus on test­ing new treatments such as dual HER2 block­ing or immunother­apy, in combination with antiHER2 targeted ther­apy with fulvestrant, aromatase inhibitors, cyclin dependent kinase 4/6 inhibitors, or inhibitors of the PI3K (phosphatidylinositol-3-kinase) pathway.

Conclusion:

The distribution of HER2+ BC accord­ing to individual subtype provides information that can contribute to achiev­ing more accurate decisions about the most appropriate ther­apy.

Key words

breast cancer – subtype – HER2 – trastuzumab – HER2 positive – triple positive – HER2 enriched

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted: 27. 9. 2018

Accepted: 26. 11. 2018


Sources

1. Slamon DJ, Clark GM, Wong SG et al. Human breast cancer: cor­relation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235(4785): 177–182.

2. Osborne CK, Schiff R. Mechanisms of endocrine resis­tance in breast cancer. An­nu Rev Med 2011; 62: 233–247. doi: 10.1146/an­nurev-med-070909-182917.

3. Lal P, Tan LK, Chen B. Cor­relation of HER-2 status with estrogen and progesterone receptors and histologic features in 3655 invasive breast carcinomas. Am J Clin Pathol 2005; 123(4): 541–546. doi: 10.1309/YMJ3-A83T-B39M-RUT9.

4. Konecny G, Pauletti G, Pegram M et al. Quantitative as­sociation between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst 2003; 95(2): 142–153.

5. Spector NL, Blackwell KL. Understand­­ing the mechanisms behind trastuzumab ther­apy for human epi­dermal growth factor receptor 2-positive breast cancer. J Clin Oncol 2009; 27(34): 5838–5847. doi: 10.1200/ JCO.2009.22.1507.

6. Graus-Porta D, Beerli RR, Daly JM et al. ErbB-2, the prefer­red heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16(7): 1647–1655. doi: 10.1093/emboj/16.7.1647.

7. Moas­ser MM. The oncogene HER2; its signal­­ing and transform­­ing functions and its role in human cancer pathogenesis. Oncogene 2007; 26(45): 6469–6487. doi: 10.1038/sj.onc.1210477.

8. Llombart-Cus­sac A, Cortés J, Paré L et al. HER2-enriched subtype as a predictor of pathological complete response fol­low­­ing trastuzumab and lapatinib without chemother­apy in early-stage HER2-positive breast cancer (PAMELA): an open-label, single-group, multicentre, phase 2 trial. Lancet Oncol 2017; 18(4): 545–554. doi: 10.1016/S1470-2045(17)30021-9.

9. Fumagal­li D, Venet D, Ignatiadis M et al. RNA sequenc­­ing to predict response to neoadjuvant anti-HER2 ther­apy a secondary analysis of the NeoALTTO randomized clinical trial. JAMA Oncol 2017; 3(2): 227–234.

10. Carey LA, Ber­ry DA, Cir­rincione CT et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 target­­ing in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol 2016; 34(6): 542–549. doi: 10.1200/JCO.2015.62.1268.

11. Prat A, Bianchini G, Thomas M et al. Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study. Clin Cancer Res 2014; 20(2): 511–521. doi: 10.1158/1078-0432.CCR-13-0239.

12. Dieci MV, Prat A, Tagliafico E et al. Integrated evaluation of PAM50 subtypes and im­mune modulation of pCR in HER2-positive breast cancer patients treated with chemother­apy and HER2-targeted agents in the CherLOB trial. Ann Oncol 2016; 27(10): 1867–1873. doi: 10.1093/an­nonc/mdw262.

13. Rimawi MF, Mayer IA, Forero A et al. Multicenter phase II study of neoadjuvant lapatinib and trastuzumab with hormonal ther­apy and without chemother­apy in patients with human epidermal growth factor receptor 2–overexpres­s­­ing breast cancer: TBCRC 006. J Clin Oncol 2013; 31(14): 1726–1731. doi: 10.1200/JCO.2012.44.8027.

14. Gian­ni L, Pienkowski T, Im YH et al. Ef­ficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with local­ly advanced, inflam­matory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 2012; 13(1): 25–32. doi: 10.1016/S1470-2045(11)70336-9.

15. Prat A, De Angelis C, Pascual TS et al. HER2-enriched subtype and ERBB2 mRNA as predictors of pathological complete response fol­low­­ing trastuzumab and lapatinib without chemother­apy in early-stage HER2-positive breast cancer: a combined analysis of TBCRC006/023 and PAMELA trials. J Clin Oncol 2018; 36 (Suppl 15): 509.

16. Tolaney SM, Bar­ry W, Guo H et al. Im­mune profile of small HER2+ tumors in the APT trial. Cancer Res 2018; 78 (Suppl 4): PD3-01. doi: 10.1158/1538-7445.SABCS17-PD3-01.

17. Pogue-Geile KL, Song N, Jeong JH et al. Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. J Clin Oncol 2015; 33(12): 1340–1347. doi: 10.1200/JCO.2014.56.2439.

18. Perez EA, Bal­lman KV, Mashadi-Hos­sein A et al. Intrinsic subtype and therapeutic response among HER2-positive breaty st tumors from the NCCTG (Al­liance) N9831 trial. J Natl Cancer Inst 2017; 109(2): djw207. doi: 10.1093/jnci/djw207.

19. Wu VS, Kanaya N, Lo C et al. From bench to bedside: what do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer? J Steroid Biochem Mol Biol 2015; 153: 45–53. doi: 10.1016/j.jsbmb.2015.05.005.

20. Prat A, Baselga J. The role of hormonal ther­apy in the management of hormonal-receptor-positive breast cancer with co-expres­sion of HER2. Nat Clin Pract Oncol 2008; 5(9): 531–542. doi: 10.1038/ncponc1179.

21. Lousberg L, Col­lignon J, Jerusalem G. Resistance to ther­apy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies. Ther Adv Med Oncol 2016; 8(6): 429–449. doi: 10.1177/1758834016665077.

22. Col­lins D, Jacob W, Cejalvo JM et al. Direct estrogen receptor (ER)/HER family cros­stalk mediat­­ing sensitivity to lumretuzumab and pertuzumab in ER+ breast cancer. PLoS One 2017; 12(5): e0177331. doi: 10.1371/journal.pone.0177331.

23. Wang YC, Mor­rison G, Gil­lihan R et al. Dif­ferent mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers – role of estrogen receptor and HER2 reactivation. Breast Cancer Res 2011; 13(6): R121. doi: 10.1186/bcr3067.

24. Giuliano M, Hu H, Wang YC et al. Upregulation of ER signal­­ing as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 ther­apy. Clin Cancer Res 2015; 21(17): 3995–4003. doi: 10.1158/1078-0432.CCR-14-2728.

25. Giuliano M, Trivedi MV, Schiff R. Bidirectional cros­s­talk between the estrogen receptor and human epidermal growth factor receptor 2 signal­­ing pathways in breast cancer: molecular basis and clinical implications. Breast Care 2013; 8(4): 256–262. doi: 10.1159/000354253.

26. Vici P, Pizzuti L, Sperduti I et al. “Triple positive” early breast cancer: an observational multicenter retrospective analysis of outcome. Oncotarget 2016; 7(14): 17932–17944. doi: 10.18632/oncotarget.7480.

27. NCCN. Breast Cancer Guidelines, Ver. 1.2018. (2018). [online] Available from: www.nccn.org.

28. Giordano SH, Temin S, Kirshner JJ et al. Systemic ther­apy for patients with advanced human epidermal growth factor receptor 2-positive breast cancer: American society of clinical oncology clinical practice guideline. J Clin Oncol 2014; 32(19): 2078–2099. doi: 10.1200/JCO.2013.54.0948.

29. Col­leoni M, Bagnardi V, Rotmensz N et al. Increas­­ing steroid hormone receptors expres­sion defines breast cancer subtypes non responsive to preoperative chemother­apy. Breast Cancer Res Treat 2009; 116(2): 359–369. doi: 10.1007/s10549-008-0223-y.

30. Paik S, Shak S, Tang G et al. A multigene as­say to predict recur­rence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351(27): 2817–2826. doi: 10.1056/NEJMoa041588.

31. Bielčiková Z, Petruželka L, Chloupková R. Trastuzumab v neoadjuvantní léčbě HER2-pozitivního karcinomu prsu: 5leté zkušenosti z onkologické kliniky VFN a 1. LF UK. Klin Onkol 2018; 31(3): 191–199. doi: 10.14735/amko2018191.

32. Kaufman B, Mackey JR, Clemens MR et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the ran­domized phase III TAnDEM study. J Clin Oncol 2009; 27(33): 5529–5537. doi: 10.1200/JCO.2008.20.6847.

33. Johnston S, Pippen J Jr, Pivot X et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line ther­apy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol 2009; 27(33): 5538–5546. doi: 10.1200/JCO.2009.23.3734.

34. Schwartzberg LS, Franco SX, Florance A et al. Lapatinib plus letrozole as first-line ther­apy for HER-2+ hormone receptor-positive metastatic breast cancer. Oncologist 2010; 15(2): 122–129. doi: 10.1634/theoncologist.2009-0240.

35. Huober J, Fasch­­ing PA, Barsoum M et al. Higher ef­ficacy of letrozole in combination with trastuzumab compared to letrozole monother­apy as first-line treatment in patients with HER2-positive, hormone-receptor-positive metastatic breast cancer – results of the eLEcTRA trial. Breast 2012; 21(1): 27–33. doi: 10.1016/j.breast.2011.07.006.

36. Hayashi N, Niikura N, Yamauchi H et al. Add­­ing hormonal ther­apy to chemother­apy and trastuzumab improves prognosis in patients with hormone receptor-positive and human epidermal growth factor receptor 2-positive primary breast cancer. Breast Cancer Res Treat 2013; 137(2): 523–531. doi: 10.1007/s10549-012-2336-6.

37. Cardoso F, Costa A, Senkus E et al. 3rd ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 3). Ann Oncol 2017; 28(1): 16–33. doi: 10.1093/an­nonc/mdw544.

38. Early Breast Cancer Trialists’ Col­laborative Group (EBCTCG). Ef­fects of chemother­apy and hormonal ther­apy for early breast cancer on recur­rence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365(9472): 1687–1717. doi: 10.1016/S0140-6736(05)66544-0.

39. Ber­ry DA, Cir­rincione C, Henderson IC et al. Estrogen-receptor status and outcomes of modern chemother­apy for patients with node-positive breast cancer. JAMA 2006; 295(14): 1658–1667. doi: 10.1001/jama.295.14.1658.

40. Arpino G, Fer­rero JM, De la Haba-Rodriguez J et al. Primary analysis of PERTAIN: a randomized, two-arm, open-label, multicenter phase II trial as­ses­s­­ing the ef­ficacy and safety of pertuzumab given in combination with trastuzumab plus an aromatase inhibitor in first-line patients with HER2-positive and hormone receptor-positive me­tastatic or local­ly advanced breast cancer. Cancer Res 2017; 77 (Suppl 4): abstr. S3-04. doi: 10.1158/1538-7445.SABCS16-S3-04.

41. Gradishar WJ, Hegg R, Im S et al. Phase III study of lapatinib (L) plus trastuzumab (T) and aromatase inhibitor (AI) vs T+AI vs L+AI in postmenopausal women (PMW) with HER2+, HR+ metastatic breast cancer (MBC): ALTERNATIVE. J Clin Oncol 2017; 35 (Suppl): abstr 1004.

42. Verma S, Miles D, Gian­ni L et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19): 1783–1791. doi: 10.1056/NEJMoa1209124.

43. Ur­ruticoechea A, Rizwanul­lah M, Im SA et al. Randomized phase III trial of trastuzumab plus capecitabine with or without pertuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who experienced dis­ease progres­sion dur­­ing or after trastuzumab-based ther­apy. J Clin Oncol 2017; 35(26): 3030–3038. doi: 10.1200/JCO.2016.70.6267.

44. Larionov AA. Cur­rent Ther­apies for human epidermal growth factor receptor 2-positive metastatic breast cancer patients. Front Oncol 2018; 8: 89. doi: 10.3389/fonc.2018.00089.

45. Salgado R, Denkert C, Campbell C et al. Tumor-infiltrat­­ing lymphocytes and as­sociations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol 2015; 1(4): 448–454. doi: 10.1001/jamaoncol.2015.0830.

46. Bianchini G, Pusztai L, Pienkowski T et al. Im­mune modulation of pathologic complete response after neoadjuvant HER2-directed ther­apies in the NeoSphere trial. Ann Oncol 2015; 26(12): 2429–2436. doi: 10.1093/an­nonc/mdv395.

47. Solinas C, Ceppi M, Lambertini M et al. Tumor-infiltrat­­ing lymphocytes in patients with HER2-positive breast cancer treated with neoadjuvant chemother­apy plus trastuzumab, lapatinib or their combination: a meta-analysis of randomized control­led trials. Cancer Treat Rev 2017; 57: 8–15. doi: 10.1016/j.ctrv.2017.04.005.

48. Luen SJ, Salgado R, Fox S et al. Tumour-infiltrat­­ing lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol 2017; 18(1): 52–62. doi: 10.1016/S1470-2045(16)30631-3.

49. Loi S, Giobbe-Hurder A, Gombos A et al. Phase Ib/II study evaluat­­ing safety and ef­ficacy of pembrolizumab and trastuzumab in patients with trastuzumab-resistant HER2-positive metastatic breast cancer: Results from the PANACEA (IBCSG 45–13/BIG 4–13/KEYNOTE-014) study. Cancer Res 2018; 78 (Suppl 4): abstr. GS2-06. doi: 10.1158/1538-7445.SABCS17-GS2-06.

50. Nuciforo P, Pascual T, Cortés J et al. A predictive model of pathological response based on tumor cel­lularity and tumor-infiltrat­­ing lymphocytes (CelTIL) in HER2-positive breast cancer treated with chemofree dual HER2 blockade. Ann Oncol 2018; 29(1): 170-177. doi: 10.1093/an­nonc/mdx647.

51. Pernas S, Tolaney SM, Winer EP et al. CDK4/6 inhibition in breast cancer: cur­rent practice and future directions. Ther Adv Med Oncol 2018; 10: 1–15. doi: 10.1177/1758835918786451.

52. Ciruelos E, Vil­lagrasa P, Paré L et al. PAM50 intrinsic subtype predicts survival outcome in HER2-positive/hormone receptor-positive metastatic breast cancer treated with palbociclib and trastuzumab: a cor­relative analysis of the PATRICIA (SOLTI 13–03) trial. Cancer Rer 2018: 78 (Suppl 4): P5–20-19. doi: 10.1158/1538-7445.SABCS17-P5-20-19.

53. Baselga J, Campone M, Piccart M et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012; 366(6): 520–529. doi: 10.1056/NEJMoa1109653.

54. André F, Hurvitz S, Fasolo A et al. Molecular alterations and everolimus ef­ficacy in human epidermal growth factor receptor 2-overexpres­s­­ing metastatic breast cancers: combined exploratory bio­marker analysis from BOLERO-1 and BOLERO-3. J Clin Oncol 2016; 34(18): 2115–2124. doi: 10.1200/JCO.2015.63.9161.

55. Sirohi B, Rastogi S, Dawood S. Buparlisib in breast cancer. Future Oncol 2015; 11(10): 1463–1470. doi: 10.2217/fon.15.56.

56. Jain S, Nye L, Santa-Maria C et al. Phase I study of alpelisib and T-DM1 in trastuzumab-refractory HER2-positive metastatic breast cancer. Cancer Res 2016; 76 (Suppl 4): P6-13-11. doi: 10.1158/1538-7445.SABCS15-P6-13-11.

Labels
Paediatric clinical oncology Surgery Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#