The Significance of BRAFV600E Mutation in Thyroid Cancer in Terms of Novel Targeted Therapies – Overview of Current Knowledge and Studies

Authors: Jakubíková Iva 1;  Gabalec Filip 1;  Beránek Martin 2;  Žák Pavel 1;  Čáp Jan 1
Authors‘ workplace: IV. interní hematologická klinika LF UK a FN Hradec Králové 1;  Ústav klinické biochemie a diagnostiky, FN Hradec Králové 2
Published in: Klin Onkol 2018; 31(5): 339-344
Category: Review
doi: 10.14735/amko2018339


Background: About 50% of papillary thyroid cancers, the most common type of all thyroid malignancies, harbor the BRAFV600E mutation. The prognostic value of this mutation is still under debate, but according to many studies, the BRAF mutation significantly downregulates genes involved in the iodine metabolism of tumor follicular cells. This mutation can be also found in some dedifferentiated and anaplastic thyroid cancers, which raises the issue of the selective advantage of novel targeted therapies. Aim: The aim of this review is to discuss the significance of the BRAF mutation mostly in radioiodine-refractory thyroid cancers (RR-TC) with respect to recent preclinical and clinical studies reporting the results of different RAF and MEK inhibitors. Conclusions: BRAF mutation detection in progressive RR-TC could play a role in decision-making of targeted therapies in the near future. So far, only multi-kinase inhibitors (sorafenib and lenvatinib) are legally accepted. On the other hand, for patients with disseminated BRAF mutant malignant melanoma or lung cancer, selective treatments with RAF and MEK inhibitors (vemurafenib, dabrafenib, and trametinib) are available. A crucial advantage of these inhibitors in the treatment of thyroid cancer is their ability to restore expression of the genes involved in iodine metabolism in cancer cells that have lost this ability, thus opening the door for radioiodine  treatment again.

Key words

thyroid cancer – BRAF mutation – biological therapy – tyrosine kinase inhibitor – MEK inhibitor

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted: 4. 6. 2018

Accepted: 1. 8. 2018


1. Tumino D, Frasca F, Newbold K. Updates on the management of advanced, metastatic, and radioiodine refractory differentiated thyroid cancer. Front Endocrinol 2017; 8: 312. doi: 10.3389/fendo.2017.00312.

2. Arenbergerová M, Puzanov I. Mutace BRAF: nový přístup k cílené léčbě melanomu. Klin Onkol 2012; 25 (5): 323–328.

3. Nikiforov YE, Steward DL, Robinson-Smith TM et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab 2009; 94 (6): 2092–2098. doi: 10.1210/jc.2009-0247.

4. Zhang Q, Liu SZ, Guan YX et al. Meta-analyses of association between BRAFV600E mutation and clinicopathological features of papillary thyroid carcinoma. Cell Physiol Biochem 2016; 38 (2): 763–776. doi: 10.1159/000443032.

5. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005; 12 (2): 245–262.

6. Xing M, Alzahrani AS, Carson KA et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 2015; 33 (1): 42–50. doi: 10.1200/JCO.2014.56.8253.

7. Dettmer MS, Schmitt A, Steinert H et al. Tall cell papillary thyroid carcinoma: new diagnostic criteria and mutations in BRAF and TERT. Endocr Relat Cancer 2015; 22 (3): 419–429. doi: 10.1530/ERC-15-0057.

8. Ito Y, Yoshida H, Maruo R et al. BRAF Mutation in papillary thyroid carcinoma in a japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr J 2009; 56 (1): 89–97.

9. Sancisi V, Nicoli D, Ragazzi M et al. BRAFV600E mutation does not mean distant metastasis in thyroid papillary carcinomas. J Clin Endocrinol Metab 2012; 97 (9): E1745–E1749. doi: 10.1210/jc.2012-1526.

10. Tavares C, Coelho MJ, Eloy C et al. NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features. Endocr Connect 2018; 7 (1): 78–90. doi: 10.1530/EC-17-0302.

11. Donh H, Shen WZ, Yan YJ et al. Effects of BRAFV600E mutation on Na+/I-symporter expression in papillary thyroid carcinoma. J Huazhong Univ Sci Technolog Med Sci 2016; 36 (1): 77–81. doi: 10.1007/s11596-016-1545-3.

12. Knauf JA, Sartor MA, Medvedovic M et al. Progression of BRAF-induced thyroid cancer is associated with epithelial–mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene 2011; 30 (28): 3153–3162. doi: 10.1038/onc.2011.44.

13. Ludvíková M, Kholová I, Kalfeřt D. Molecular aspects of thyroid tumors with emphasis on microRNA and their clinical implications. Klin Onkol 2017; 30 (3): 167–174. doi: 10.14735/amko2017167.

14. Penna GC, Vaisman F, Vaisman M et al. Molecular markers involved in tumorigenesis of thyroid carcinoma: focus on aggressive histotypes. Cytogenet Genome Res 2016; 150 (3–4): 194–207. doi: 10.1159/000456576.

15. Ricarte-Filho JC, Ryder M, Chitale DA et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 2009; 69 (11): 4885–4893. doi: 10.1158/0008-5472.CAN-09-0727.

16. Sabra MM, Dominguez JM, Grewal RK et al. Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. J Clin Endocrinol Metab 2013; 98 (5): E829–E836. doi: 10.1210/jc.2012-3933.

17. Durante C, Haddy N, Baudin E et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91 (8): 2892–2899. doi: 10.1210/jc.2005-2838.

18. Saji M, Ringel MD. The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol Cell Endocrinol 2010; 321 (1): 20–28. doi: 10.1016/j.mce.2009.10.016.

19. ElMokh O, Ruffieux-Daidié D, Roelli MA et al. Combined MEK and Pi3’-kinase inhibition reveals synergy in targeting thyroid cancer in vitro and in vivo. Oncotarget 2017; 8 (15): 24604–24620. doi: 10.18632/oncotarget.15599.

20. Nagarajah J, Le M, Knauf JA et al. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. J Clin Invest 2016; 126 (11): 4119–4124. doi: 10.1172/JCI89067.

21. Cheng Y, Tian H. Current development status of MEK inhibitors. Molecules 2017; 22 (10): E1551. doi: 10.3390/molecules22101551.

22. Kurata K, Onoda N, Noda S et al. Growth arrest by activated BRAF and MEK inhibition in human anaplastic thyroid cancer cells. Int J Oncol 2016; 49 (6): 2303–2308. doi: 10.3892/ijo.2016.3723.

23. Wei WJ, Sun ZK, Shen CT et al. Obatoclax and LY3009120 efficiently overcome vemurafenib resistance in differentiated thyroid cancer. Theranostics 2017; 7 (4): 987–1001. doi: 10.7150/thno.17322.

24. Cabanillas ME, Patel A, Danysh BP et al. BRAF Inhibitors: experience in thyroid cancer and general review of toxicity. Horm Cancer 2015; 6 (1): 21–36. doi: 10.1007/s12672-014-0207-9.

25. Brose MS, Nutting CM, Jarzab B et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384 (9940): 319–328. doi: 10.1016/S0140-6736 (14) 60421-9.

26. Schlumberger M, Tahara M, Wirth LJ et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372 (7): 621–630. doi: 10.1056/NEJMoa1406470.

27. Heneberg P. Dabrafenib: nový inhibitor hyperaktivní kinázy B-RAF. Klin Onkol 2012; 25 (5): 333–339.

28. Kopecký J. Kubeček O. Role BRAF/MEK inhibice u metastazujícího maligního melanomu – kazuistika. Klin Onkol 2016; 29 (2): 133–138. doi: 10.14735/amko2016133.

29. Ho AL, Grewal RK, Leboeuf R et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013; 368 (7): 623–632. doi: 10.1056/NEJMoa1209288.

30. Brose MS, Cabanillas ME, Cohen EE et al. Vemurafenib in patients with BRAFV600E – positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol 2016; 17 (9): 1272–1282. doi: 10.1016/S1470-2045 (16) 30166-8.

31. Rothenberg SM, McFadden DG, Palmer EL et al. Redifferentiation of iodine-refractory BRAF V600E – mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res 2015; 21 (5): 1028–1035. doi: 10.1158/1078-0432.CCR-14-2915.

32. Huillard O, Tenenbaum F, Clerc J et al. Restoring radioiodine uptake in BRAF V600E – mutated papillary thyroid cancer. J Endocr Soc 2017; 1 (4): 285–287. doi: 10.1210/js.2016-1114.

33. Subbiah V, Kreitman RJ, Wainberg ZA et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600 – mutant anaplastic thyroid cancer. J Clin Oncol 2018; 36 (1): 7–13. doi: 10.1200/JCO.2017.73.6785.

34. Balmelli C, Railic N, Siano M et al. Lenvatinib in advanced radioiodine-refractory thyroid cancer – a retro-spective analysis of the swiss lenvatinib named patient program. J Cancer 2018; 9 (2): 250–255. doi: 10.7150/jca.22318.

35. Cabanillas ME, Habra MA. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat Rev 2016; 42: 47–55. doi: 10.1016/j.ctrv.2015.11.003.

Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 5

2018 Issue 5

Most read in this issue

This topic is also in:

Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account