#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

New Technologies for In Vivo Cancer Diagnostics


Authors: L. Hernychová 1;  D. Coufalová 1;  E. Michalová 1;  R. Nenutil 2;  B. Vojtěšek 1
Authors‘ workplace: Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno 1;  Oddělení onkologické patologie, Masarykův onkologický ústav, Brno 2
Published in: Klin Onkol 2016; 29(Supplementum 4): 88-94
Category: Review
doi: https://doi.org/10.14735/amko20164S88

Overview

Background:
The treatment of oncological diseases is based on the combination of surgery, representing the key step for the removal of the tumor tissue, radiotherapy, chemotherapy, and hormone therapy. However, the surgery is often accompanied by issue of determining the boundaries of the tumor. Prior the operation, the surgeon has information on preoperative findings, which indicate the location and extent of the tumor, but does not specify a clear boundary between the tumor and healthy tissue. This area cannot be recognized visually or by touch in most cases and when the tumor is not removed completely the patient has to undergo reoperation.

Aim:
Therefore, a number of research centers began to deal with the development of technology that would provide information about the state of the tissue in real time directly during surgery and would not require the collection or storage of tissue samples. These include MarginProbe, Spectropen tissue and spectroscopic scanner devices. Another group consists of imaging techniques using mass spectrometry approaches to determine the tissue specificity. Recently, the intraoperative mass spectrometry (REIMS) technique has undergone tremendous development. It uses an electronic scalpel using by the surgeon for cutting the tissue, when the resulting aerosol is discharged into the mass spectrometer that in tenths of seconds measures mass spectra of phospholipids, which are specific to the operated tissue (tumor or healthy). In the Czech Republic this technology has been already used for research purposes for the detection of drug deposited in the tumor and healthy tissue of mice suffering from melanoma. The obtained results show that with this apparatus it would be possible fundamentally affect the treatment and its efficacy in oncology as well. We will inform you about these new technologies and elucidate their principles and utilization.

Key words:
surgery – cancer – tumors – molecular diagnostics – mass spectrometry – database

This work was supported by the project MEYS – NPS I – LO1413.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted:
17. 5. 2016

Accepted:
6. 9. 2016


Sources

1. Medgadget.com [online]. MarginProbe FDA cleared to help remove entire breast cancer lumps. Available from: www.medgadget.com/2013/01/marginprobe-fda-cleared-to-help-remove-entire-breast-cancer-lumps.html.

2. Schnabel F, Boolbol SK, Gittleman M et al. A randomized prospective study of lumpectomy margin assessment with use of MarginProbe in patients with nonpalpable breast malignancies. Ann Surg Oncol 2014; 21 (5): 1589–1595. doi: 10.1245/s10434-014-3602-0.

3. Rivera RJ, Holmes DR, Tafra L. Analysis of the impact of intraoperative margin assessment with adjunctive use of MarginProbe versus standard of care on tissue volume removed. Int J Surg Oncol 2012; 2012: 868623.

4. Blohmer JU, Tanko J, Kueper J et al. MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer. Arch Gynecol Obstet 2016; 294 (2): 361–367. doi: 10.1007/s00404-016-4011-3.

5. MargineProbe [homepage on the Internet]. Breastcancer.org, PA; c2016, [updated 2015 Oct 23; cited 2016 May 30]. Available from: www.breastcancer.org/symptoms/testing/types/marginprobe.

6. Mohs AM, Mancini MC, Singhal S et al. Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 2010; 82 (21): 9058–9065. doi: 10.1021/ac102058k.

7. Kircher MF, de la Zerda A, Jokerst JV et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 2012; 18 (5): 829–834. doi: 10.1038/nm.2721.

8. Karabeber H, Huang R, Iacono P et al. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 2014; 8 (10): 9755–9766.

9. Holt D, Okusanya O, Judy R et al. Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation. PLoS One 2014; 9 (7): e103342. doi: 10.1371/journal.pone.0103342.

10. Lue N, Kang JW, Yu CC et al. Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment. PLoS One 2012; 7 (1): e30887. doi: 10.1371/journal.pone.0030887.

11. Chowdary PD, Jiang Z, Chaney EJ et al. Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. Cancer Res 2010; 70 (23): 9562–9569. doi: 10.1158/0008-5472.CAN-10- 1554.

12. Ahlberg L. New imaging technique accurately finds cancer cells. [online]. Illinois.edu. University of Illinois at Urbana-Champaign, IL; c2015 [updated 2010 Nov 24; cited 2016 May 5]. Available from: https://news.illinois.edu/blog/view/6367/205473.

13. Römpp A, Spengler B. Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 2013; 139 (6): 759–783. doi: 10.1007/s00418-013-1097-6.

14. Boxer SG, Kraft ML, Weber PK. Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 2009; 38: 53–74. doi: 10.1146/annurev.biophys.050708.133634.

15. Pal R, Singh OM, Talwar GP et al. Active immunization of baboons (Papio anubis) with the bovine LH receptor. J Reprod Immunol 1992; 21 (2): 163–174.

16. Takáts Z, Wiseman JM, Gologan B et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004; 306 (5695): 471–473.

17. Zimmerman TA, Monroe EB, Tucker KR et al. Chapter 13: imaging of cells and tissues with mass spectrometry: adding chemical information to imaging. Methods Cell Biol 2008; 89: 361–390. doi: 10.1016/S0091-679X (08) 00613-4.

18. Spengler B, Hubert M, Kaufmann R. MALDI ion imaging and biological ion imaging with a new scanning UV-laser microprobe. Proc 42nd Annu Conf Mass Spectrom Allied Top, Chicago, Illinois, 1994; abstr. 1041.

19. Pol J, Faltyskova H, Krasny L et al. Age-related changes in the lateral lipid distribution in a human lens described by mass spectrometry imaging. Eur J Mass Spectrom (Chichester) 2015; 21 (3): 297–303. doi: 10.1255/ejms. 1350.

20. Barceló-Coblijn G, Fernández JA. Mass spectrometry coupled to imaging techniques: the better the view the greater the challenge. Front Physiol 2015; 6: 3. doi: 10.3389/fphys.2015.00003.

21. Pól J, Strohalm M, Havlíček V et al. Molecular mass spectrometry imaging in biomedical and life science research. Histochem Cell Biol 2010; 134 (5): 423–443. doi: 10.1007/s00418-010-0753-3.

22. Vidová V, Volný M, Lemr K et al. Surface analysis by imaging mass spectrometry. Collect Czechoslov Chem Commun 2009; 74: 1101–1116.

23. Svatos A. Mass spectrometric imaging of small molecules. Trends Biotechnol 2010; 28 (8): 425–434. doi: 10.1016/j.tibtech.2010.05.005.

24. Balog J, Szaniszlo T, Schaefer KC et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal Chem 2010; 82 (17): 7343–7350. doi: 10.1021/ac101283x.

25. Balog J, Sasi-Szabó L, Kinross J et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 2013; 5 (194): 194ra93. doi: 10.1126/scitranslmed.3005623.

26. Balog J, Kumar S, Alexander J et al. In vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). Angew Chem Int Ed Engl 2015; 54 (38): 11059–11062. doi: 10.1002/anie.201502 770.

27. Enyedi A, Csongor V, Szabó K et al. Real-time detection of metastases in lymph nodes during thoracic surgery. Interact Cardiovasc Thorac Surg 2014; 18 (Suppl 1): S11.

28. Heath N. The intelligent knife that helps surgeons sniff out cancer [online]. CBS Interactive; c2016 [updated 2014 Nov 11; cited 2016 May 30]. Available from: http://www.techrepublic.com/blog/european-technology/the-intelligent-knife-that-helps-surgeons-sniff-out- cancer.

29. Balog J, Sasi-Szabó L, Kinross J et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 2013; 5 (194): 194ra93. doi: 10.1126/scitranslmed.3005623.

30. Čeští lékaři testují chytrý skalpel, který pozná zdravou tkáň od poškozené. TV, ČT24. [aktualizováno 3. dubna 2016; citováno 30. května 2016]. Dostupné z: http://www.ceskatelevize.cz/ct24/domaci/1739080-cesti-lekari-testuji-chytry-skalpel-ktery-pozna-zdravou-tkan-od-poskozen.

31. Strittmatter N, Jones EA, Veselkov KA et al. Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry. Chem Commun 2013; 49 (55): 6188–6190. doi: 10.1039/c3cc42015a.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue Supplementum 4

2016 Issue Supplementum 4

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#