#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The importance of physical activity for survival and quality of life in patients with lymphoproliferative disease


Authors: M. Hadrabová;  A. Janíková
Authors‘ workplace: Interní hematologická a onkologická klinika FN Brno a LF MU Brno
Published in: Transfuze Hematol. dnes,24, 2018, No. 3, p. 182-192.
Category:

Overview

The aim of this review is to summarize the issues associated with physical activity in lymphoma patients. Including physical activity in standard supportive care may appear trivial at first. Practice has shown however that it very difficult to implement despite. Lymphoma patients are, from the aspect of physical training application, a very heterogeneous group, comprising patients who have finished their treatment and have no special physical limitations, outpatients, patients hospitalized for an extended period due to auto/allogeneic stem cell transplantation or intensive induction treatment. Each group requires a different training methodology and different means of providing objective measurements of physical load.

Therefore, we focused on the means of monitoring the individual components of patient fitness levels with regards to feasibility in individual patient sub-groups. We also studied the factors that differentiate lymphoma patients from the healthy population and that affect both the structure and results that are to be expected from physical training intervention. We then summarized and analysed, based on individual lymphoma patient sub-groups, the results of existing studies concerned with physical training intervention.

Our results indicate that correctly implemented physical intervention may (similarly to the case in certain solid tumours) lead to increased long-term survival rates. It is, however, important to correctly define the structure of the physical training, based the given patient´s current phase of treatment, age and any other limitations, in order for physical training to be a meaningful treatment-supportive method.

Key words:

lymphoproliferative diseases – physical fitness – physical training – quality of life


Sources

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:359–386.

2. Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non--Hodgkin Lymphoma Subtypes Project. J Nat Cancer Inst Monographs 2014;48:130–144.

3. Huh J. Epidemiologic overview of malignant lymphoma. Kor J Hematol 2012;47(2):92–104.

4. Roman E, Smith AG. Epidemiology of lymphomas. Histopathology 2011;58:4–14. 

5. Oerlemans S, Mols F, Issa DE, et al. A high level of fatigue among long-term survivors of non-Hodgkin’s lymphoma: results from the longitudinal population-based PROFILES registry in the south of the Netherlands. Haematologica 2013;98(3):479–486.

6. Jensen RE, Arora NK, Belizzi KM, et al. Health-related quality oflife among survivors of aggressive non-Hodgkin lymphoma. Cancer 2013;119(3):672–680.

7. Blaes AH, Ma L, Zhang Y, et al. Quality of life appears similar between survivors of indolent and aggressive non-Hodgkin lymphoma. Leuk Lymphoma 2011;52(11):2105–2110. 

8. Bower JE. Cancer-related fatigue: Mechanisms, risk factors, and treatments. Nat Rev Clin Oncol 2014;11(10):597–609.

9. Berger AM, Mooney K, Alvarez-Perez A, et al. Cancer-related fatigue, clinical practice guidelines in oncology. J Nat Compr Cancer Netw 2015;13(8):1012–1039.

10. Boyle T, Connors JM, Gascoyne R, et al. Physical activity, obesity and survival in diffuse large B-cell and follicular lymphoma cases. Br J Haematol 2017;178:442–447.

11. Kohler LN, Garcia DO, Harris RB, et al. Adherence to diet and physical activity cancer prevention guidelines and cancer outcomes: a systematic review. Cancer Epidemiol Biomarkers Prev 2016;25(7):1018–1028.

12. Friedenreich CM, Orenstein MR. Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr 2002;132:3456–3464.

13. Anand P, Kunnumakara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008;25(9):2097–2116.

14. Spence RR, Heesch KC, Brown WJ, et al. A systematic review of the association, between physical activity and colorectal cancer risk. Scand J Med Sci Sports 2009;19:764–781.

15. Kelly SA, Zhao L, Jung KCH, et al. Prevention of tumorigenesis in mice by exercise is dependent on strain background and timing relative to carcinogen exposure. Sci Rep 2017;7:43086.

16. Pedersen L, Idorn M, Olofsson GH, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 2016;23(3):554–562.

17. Bergström A, Terry P, Lindblad P, et al. Physical activity and risk of renal cell cancer. Int J Cancer 2001;92(1):155–157.

18. Michaud DS, Giovannucci E, Willet WC, et al. Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 2001;286(8):921–929.

19. Wen CP, Wai JP, Tsai MK, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 2011;378:1244–1253.

20. Brown JC, Winters-Stone K, Lee A, et al. Cancer, physical activity, and exercise. Compr Physiol 2012;2:2775–2809.

21. Bade BC, Thomas DD, Scott JB, et al. Increasing physical activity and exercise in lung cancer: reviewing safety, benefits, and application. J Thorac Oncol 2015;10(6):861–871.

22. Holmes MD, Chen WY, Feskanich D, et al. Physical activity and survival after breast cancer diagnosis. JAMA 2005;293:2479–2486.

23. Máček M, Radvanský J. Fyziologie a klinické aspekty pohybové aktivity. 1. vyd. Praha, Galén, 2011.

24. Steffen TM, Hacker TA, Mollinger L, et al. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys Ther 2002;82(2):128–137.

25. Ries JD, Echternach JL, Nof L, et al. Test-retest reliability and minimal detectable change scores for the timed “Up & Go” Test, the Six--Minute Walk Test, and gait speed in people with Alzheimer disease. Phys Ther 2009;89(6):569–579.

26. Achten J, Jeukendrup AE, Asker E, et al. Heart rate monitoring: applications and limitations. Sports Med 2003;33(7):517–538.

27. Da Cunha FA, Farinatti Pde T, Midglay AW, et al. Methodological and practical application issues in exercise prescription using the heart rate reserve and oxygen uptake reserve methods. Sci Med Sport 2011;14(1):46–57.

28. Hampton S, Armstrong G, Shah MV, et al. Quantification of perceived exertion during isometric force production using Borg scale in healthy individuals and in chronic stroke patients. Top Stroke Rehab 2014;21(1):33–39.

29. Aagaard P, Andersen JL, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sports 2011;21:298–307.

30. Lehnert M, Novosad J, Neuls F, Langer F, Botek M. Trénink kondice ve sportu. 1. vyd. Olomouc, Univerzita Palackého v Olomouci, 2010.

31. Wind AE, Takken T, Helders PJ, et al. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr 2010;169(3):281–287.

32. Velghe A, De Buyser, Noens L, et al. Hand grip strength as a screening tool for frailty in older patients with haematological malignancies. Acta Clin Belg 2016;71(4):227–230.

33. Granger CL, McDonald CF, Parry SM, et al. Functional capacity, physical activity and muscle strength assessment of individuals with non-small cell lung cancer: a systematic review of instruments and their measurement properties. BMC Cancer 2013;13:135–140.

34. Tieland M, Verdiik LB, de Groot LC, et al. Handgrip strength does not represent an appropriate measure to evaluate changes in muscle strength during an exercise intervention program in frail older people. Int J Sport Nutr Exerc Metab 2015;25(1):27–36.

35. Podsiadlo D, Richardson S. The timed ‚Up & Go‘: A test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39(2):142–148.

36. Nyberg LA, Hellénius M, Wandell P, et al. Maximal step-up height as a simple and relevant health indicator: a study of leg muscle strength and the associations to age, anthropometric variables, aerobic fitness and physical function. Br J Sports Med 2013;47:992–997.

37. Bohannon RW, Richard W, Magasi SR, et al. “Sit-to-Stand Test: performance and determinants across the age-span.” Isokinet Exerc Sci 2010;18(4):235–240.

38. Jones AM, Vanhatalo A, Burnley M, et al. Critical power: implica­tions for determination of V O2max and exercise tolerance. Med Sci Sports Exerc 2010;42(10):1876–1890.

39. Duren DL, Sherwood RJ, Czerwinski SA, et al. Body composition methods: comparisons and interpretation. J Diabetes Sci Technol 2008;2(6):1139–1146.

40. Hottenrott K, Hoos O, Esperer HD. Heart rate variability and physical exercise – current status. Herz 2006;31(6):544–552.

41. Kop WJ, Stein PK, Tracy RP, et al. Autonomic nervous system dysfunction and inflammation contribute to the increased cardiovascular mortality risk associated with depression. Psychosom Med 2010;72(7):626–635.

42. Indumathy J, Pal GK, Pal P, et al. Association of sympathovagal imbalance with obesity indices, and abnormal metabolic biomarkers and cardiovascular parameters. Obes Res Clin Pract 2015;9(1):55–66.

43. Giese-Davis J, Wilhelm FH, Tamagawa R, et al. Higher vagal activity as related to survival in patients with advanced breast cancer: an analysis of autonomic dysregulation. Psychosom Med 2015;77(4):346–355.

44. Guo Y, Koshy S, Hui D, et al. Prognostic value of heart rate variability in patients with cancer. J Clin Neurophys 2015;32(6):516–520.

45. Fadul N, Strasser F, Palmer JL, et al. The association between autonomic dysfunction and survival in male patients with advanced cancer: a preliminary report. J Pain Symptom Manag 2010;39:283–290.

46. Stejskal P, Šlachta R, Elfmark M, et al. Spectral analysis of heart rate variability: new evaluation method. Acta Univ Palacky Olomuc 2002;32(2):13–18.

47. Galuszka J, Stejskal P, Lukl J, et al. Assessment of spectral analysis of heart rate variability in patients with history of atrial fibrillation by means of age-dependent parameters. Biomed Papers 2002;146(2):81–85.

48. Niederer D, Vogt L, Thiel C, et al. Exercise effects on HRV in cancer patients. Int J Sports Med 2013;34(1):68–73.

49. Franco MR, Tong A, Howard K, et al. Older people’s perspectives on participation in physical activity: a systematic review and thematic synthesis of qualitative literature. Br J Sports Med 2015;49(19):1268–1276.

50. Lee I-M, Shiroma EJ, Lobelo F, et al. Impact of physical inactivity on the world’s major non-communicable diseases. Lancet 2012;380(9838):219–229.

51. Gerovasili V, Agaku IT, Filippidis FE, et al. Levels of physical activity among adults 18–64 years old in 28 European countries. Prev Med 2015;81:87–91.

52. Marques A, Sarmento H, Martins J, et al. Prevalence of physical activity in European adults – compliance with the World Health Organization’s physical activity guidelines. Prev Med 2015;81:333–338.

53. Hallal CP, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 2012;380(9838):247–257.

54. Janíková A, Radvanský J, Vysoký R, et al. Význam fyzické aktivity u pacientů s hematoonkologickými malignitami. Transfuze Hematol Dnes 2012;18:31–38.

55. Kampshoff CS, van Mechelen W, Schep G, et al. Participation in and adherence to physical exercise after completion of primary cancer treatment. Int J Behav Nutr Phys Act 2016;13(1):100.

56. Bilora F, Veronese F, Zancan A, et al. Autonomic dysfunction in Hodgkin and non-Hodgkin lymphoma. A paraneoplastic syndrome? Hematol Rep 2010;2(1):e8.

57. De Couck M, van Brummelen D, Schallier D, et al. The relationship between vagal nerve aktivity and clinical outcomes in prostate and non-small cell lung cancer patients. Oncol Rep 2013;30(5):2435–2441.

58. Vermaete N, Wolter P, Verhoef G, et al. Physical activity and physical fitness in lymphoma patients before, during, and after chemotherapy: a prospective longitudinal study. Ann Hematol 2014;93:411–424.

59. Götte M, Kesting S, Winter C, et al. Comparison of self-reported physical activity in children and adolescents before and during cancer treatment. Pediatr Blood Cancer 2014;61(6):1023–1028.

60. Cunningham D, Hawkes EA, Jack A, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet 2013;381(9880):1817–1826.

61. Eichenauer DA, Engert A, André M, et al. on behalf of the ESMO Guidelines Working Group Hodgkin‘s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014;25(3):70–77.

62. Inder WJ, Jang C, Obeyesekere VR, Alford FP. Dexamethasone administration inhibits skeletal muscle expression of the androgen receptor and IGF-1 – implications for steroid-induced myopathy. J Endocrinol (Oxf) 2010;73(1):126–132.

63. Minetto MA, Qaisar R, Agoni V, et al. Quantitative and qualitative adaptations of muscle fibers to glucocorticoids. Muscle Nerve 2015;16:631–639.

64. Danon MJ, Schliselfeld LH. Study of skeletal muscle glycogenolysis and glycolysis in chronic steroid myopathy, non-steroid histochemical type-2 fiber atrophy, and denervation. Clin Biochem 2007;40(1–2):46–51.

65. Straus DJ. Long-term survivorship at a price: late-term, therapy-associated toxicities in the adult Hodgkin lymphoma patient. Ther Adv Hematol 2011;2(2):111–119.

66. Caruso V, Di Castelnuovo A, Meschengieser S, et al. Thrombotic complications in adult patients with lymphoma: a meta-analysis of 29 independent cohorts including 18 018 patients and 1149 events. Blood 2010;115(26):5322–5328.

67. Banach M, Juranek JK, Zygulska AL, et al. Chemotherapy induced neuropathies – a growing problem for patients and health care providers. Brain Behav 2017;7(1):e00558.

68. Kerckhove N, Collin A, Condé S, et al. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front Pharmacol 2017;8:86.

69. Nousiainen T, Vanninen E, Jantunen E, et al. Neuroendocrine changes during evolution of doxorubicin-induced left ventricular dysfunction in adult lymphoma patients. Clin Sci 2001;101(6):601–607.

70. Simunek T, Sterba M, Popelova A, et al. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 2009;61(1):154–171.

71. Mège A, Ziouèche A, Porel N, et al. Toxicité cardiaque de la radiothérapie. Cancer Radiothérap 2010;15(6):495–503.

72. Elter T, Stipanov M, Heuser E, et al. Is physical exercise possible in patients with critical cytopenia undergoing intensive chemotherapy for acute leukaemia or aggressive lymphoma? Int J Hematol 2009;90(2):199–204.

73. Dimeo F, Fetscher S, Lange W, et al. Effects of aerobic exercise on the physical performance and incidence of treatment-related complications after high-dose chemotherapy. Blood 1997;90(9):3390–3394.

74. Bergenthal N, Will A, Streckmann F, et al. Aerobic physical exercise for adult patients with haematological malignancies. Cochrane Dat Syst Rev 2014:11.

75. Ishikawa A, Tsuji T. The impact of rehabilitation on patients undergoing hematopoietic stem cell transplantation, J Hematopoiet Cell Transplant 2016;4(5):107–117.

76. Tarnowski M, Piotrowska K, Grymula K, et al. Prolonged strenuous exercise expands the population of developmentally early stem cells in bone marrow (BM) and mobilizes them into peripheral blood – novel evidence that strongly supports a positive effect of physical activity on extension of life span at the level of stem cells. Blood 2012;20(21):584.

77. http://ec.europa.eu/assets/eac/sport/library/policy_documents/eu-physical-activity-guidelines-2008_en.pdf

78. http://www.fsps.muni.cz/spa/vysledky/

79. McNeely ML, Campbell KL, Rowe BH, et al. Effects of exercise on breast cancer patients and survivors: A systematic review and meta-analysis. Can Med Assoc J 2006;175:34–41.

80. Meyerhardt JA, Giovanucci EL, Holmes MD, et al. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 2006;24:3527–3534.

81. Bellizzi KM, Rowland JH, Jeffery DD, et al. Physical activity and quality of life in adult survivors of non-Hodgkin’s lymphoma. J Clin Oncol 2009;27(6):960–966.

82. De Backer IC, Vreugdenhil G, Nijziel MR, et al. Long-term follow-up after cancer rehabilitation using high-intensity resistence training: persistent improvement of physical performance and quality of life. Br J Cancer 2008;99:30–36.

83. Courneya KS, Sellar CM, Stevinson C, et al. Randomized controlled trial of the effects of aerobic exercise on physical functioning and quality of life in lymphoma patients. J Clin Oncol 2009;27(27):4605–4612.

84. Courneya KS, Stevinson C, McNeely ML, et al. Effects of supervised exercise on motivational outcomes and longer-term behavior. Med Sci Sports Exerc 2012;44(3):542–549.

85. Streckmann F, Kneis S, Leifert JA, et al. Exercise program improves therapy-related side effects and quality of life in lymphoma patients undergoing therapy. Ann Oncol 2014;25:493–499.

86. Baumann FT, Zimmer P, Finkenberg K, et al. Influence of endurance exercise on the risk of pneumonia and fever in leukemia and lymphoma patients undergoing high dose chemotherapy. A pilot study. J Sports Sci Med 2012;11:638–642.

87. Baumann FT, Zopf EM, Nykamp E, et al. Physical aktivity for patients undergoing an allogeneic hematopoietic stem cell transplantation: benefits of a moderate exercise intervention. Eur J Haematol 2011;87:148–156.

88. Chang PH, Lai YH, Shun SC, et al. Effects of a walking intervention intervention on fatigue-related experinces of hospitalized acute myelogenous leukemia patients undergoing chemotherapy: A randomized controlled trial. J Pain Symptom Manag 2008;35:524–534.

89. Alibhai SM, O´Neil S, Fisher-Schlombs K, et al. A clinical trial of supervised exercise for adult inpatients with acute myleoid leukemia (AML) undergoing induction chemotherapy. Lek Res 2012;36(10):1255–1261.

Labels
Haematology Internal medicine Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#