#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A review of possible complications in patients after decompressive craniectomy


Authors: M. Hanko 1;  J. Soršák 2;  P. Snopko 1;  R. Opšenák 1;  K. Zeleňák 2;  B. Kolarovszki 1
Authors‘ workplace: Neurochirurgická klinika, Jesseniova lekárska fakulta v Martine, Univerzita Komenského v Bratislave a Univerzitná nemocnica Martin 1;  Rádiologická klinika, Jesseniova lekárska fakulta v Martine, Univerzita Komenského v Bratislave a Univerzitná nemocnica Martin 2
Published in: Rozhl. Chir., 2020, roč. 99, č. 1, s. 5-14.
Category:
doi: https://doi.org/10.33699/PIS.2020.99.1.5–14

Overview

Through the decades of its use in the management of neurosurgical emergencies decompressive craniectomy has found its place as a life-saving procedure capable of a radical reduction of the intracranial pressure. Clinical results and rate of survival after decompressive craniectomy vary according to the primary diagnosis, and they have been a subject of multicentric randomized trials. However,  considerable attention also needs to be kept on complications associated with the craniectomy. They are based not only on the procedure’s invasivity but also on the pathophysiological changes associated with a conversion of the closed intracranial space to an open one. The complications may further disturb the postoperative care and convalescence in the surviving patients, and therefore in the salvageable patients the indication of decompressive craniectomy should be based on information about the expected outcome and complications rate, at the same moment prevention, early recognition and adequate therapy of the complications should be emphasized. This work describes the most common complications occurring in patients after decompressive craniectomy, their pathophysiological principles and means of treatment and prevention.

Keywords:

complications – decompressive craniectomy – intracranial hypertension


Sources
  1. Stiver SI. Complications of decompressive craniectomy for traumatic brain injury. Neurosurg Focus 2009;26(:E7. doi:10.3171/2009.4.FOCUS0965.
  2. Gopalakrishnan MS, Shanbhag NC, Shukla DP, et al. Complications of decompressive craniectomy. Front Neurol. 2018;9:977. doi:10.3389/fneur.2018.00977.
  3. Mraček J. Dekompresivní kraniektomie. Praha, Galén 2016.
  4. Jaeger M, Soehle M, Meixensberger J. Effects of decompressive craniectomy on brain tissue oxygen in patients with intracranial hypertension. J Neurol Neurosurg Psychiatry 2003;74:5135.
  5. Yang XF, Wen L, Shen F, et al. Surgical complications secondary to decompressive craniectomy in patients with a head injury: a series of 108 consecutive cases. Acta Neurochirur. (Wien) 2008;150:12418. doi:10.1007/s00701-008-0145-9.
  6. Su TM, Lee TH, Chen WF. Contralateral acute epidural hematoma after decompressive surgery of acute subdural hematoma: clinical features and outcome. J Trauma 2008;65:1298–1302. doi:10.1097/TA.0b013e31815885d9.
  7. Talbott JF, Gean A, Yuh EL, et al. Calvarial fracture patterns on CT imaging predict risk of a delayed epidural hematoma following decompressive craniectomy for traumatic brain injury. AJNR Am J Neuroradiol. 2014;35:19305. doi:10.3174/ajnr.A4001.
  8. André M, de O Py M, Niemeyer-Filho P. Temporal muscle haematoma as a cause of suboptimal haemicraniectomy: case report. Arq Neuro-Psiquiatr. 2003;61(3A). doi:10.1590/S0004-282X2003000400030.
  9. Yu SH, Kim BC, Choi JY, et al. Addition of resection of temporal muscle and fascia in decompressive craniectomy in the treatment of traumatic brain injury. Korean J Neurotrauma 2016;12:84–8. doi:10.13004/kjnt.2016.12.2.84.
  10. Kurland DB, Khaladj-Ghom A, Stokum JA, et al. Complications associated with decompressive craniectomy: A systematic review. Neurocrit Care 2015;23:292–304. doi:10.1007/s12028-015-0144-7.
  11. Iaccarino C, Schiavi P, Picetti E. Patients with brain contusions: predictors of outcome and relationship between radiological and clinical evolution. J Neurosurg. 2014;120:908–18. doi:10.3171/2013.12.JNS131090.
  12. Carnevale JA, Segar DJ, Powers AY, et al. Blossoming contusions: identifying factors contributing to the expansion of traumatic intracerebral hemorrhage. J Neurosurg. 2018;129:1305–16. doi:10.3171/2017.7.JNS17988.
  13. Wilkes S, McCormack E, Kenney K, et al. Evolution of traumatic parenchymal intracranial hematomas (ICHs): comparison of hematoma and edema components. Front Neurol. 2018;9:527. doi:10.3389/fneur.2018.00527.
  14. Szczygielski J, Mautes AE, Müller A, et al. Decompressive craniectomy increases brain lesion volume and exacerbates functional impairment in closed head injury in mice. J Neurotrauma 2016;33:122–31. doi:10.1089/neu.2014.3835.
  15. Nasi D, di Somma L, Glasi M, et al. New or blossoming hemorrhagic contusions after decompressive craniectomy in traumatic brain injury: Analysis of risk factors. Front Neurol. 2018;9:1186. doi:10.3389/fneur.2018.01186.
  16. Flint AC, Manley GT, Gean AD, et al. Post-operative expansion of hemorrhagic contusions after unilateral decompressive hemicraniectomy in severe traumatic brain injury. J Neurotrauma 2008;25:503–12. doi:10.1089/neu.2007.0442.
  17. Lee MH, Yang JT, Weng HH, et al. Hydro­cephalus following decompressive craniectomy for malignant middle cerebral artery infarction. Clinical Neurology and Neurosurgery 2012;14(6):555–9. doi:10.1016/j.clineuro.2011.11.027.
  18. Lonjaret L, Ros M, Boetto S, et al. Brainstem haemorrhage following decompressive craniectomy. J Clin Neurosci. 2012;19:1293–5. doi:10.1016/j.jocn.2012.01.014.
  19. Parizel PM, Makkat S, Jorens PG, et al. Brainstem hemorrhage in descending transtentorial herniation (Duret haemorrhage). Intensive Care Med. 2002;28(1):85–8. doi:10.1007/s00134-001-1160-y.
  20. Cardinale M, Meaudre E, Cunqi PQ, et al. Duret hemorrhage complicating a sinking skin flap syndrome. Br J Neurosurg. 2017;8:1–2. doi:10.1080/02688697.2017.1374350.
  21. Graham DI, Lawrence AE, Adams JH, et al. Brain damage in non-missile head injury secondary to high intracranial pressure. Neuropathol Appl Neurobiol. 1987;13:209–17.
  22. Nedergaard M, Klinken L, Paulson OB. Secondary brain stem hemorrhage in stroke. Stroke 1983;14:501–5.
  23. Chew KL, Baber Y, Iles L, et al. Duret hemorrhage: demonstration of ruptured paramedian pontine branches of the basilar artery of minimally invasive, whole body post-mortem CT angiography. Forensic Sci Med Pathol. 2012;8:436–40. doi:10.1007/s12024-012-9329-y.
  24. Klintworth GK. The pathogenesis of secondary brainstem hemorrhages as studied in an experimental model. Am J Pathol. 1965;47:525–36.
  25. Stiver SI, Gean AD, Manley GT. Survival with good outcome after cerebral herniation and Duret hemorrhage caused by traumatic brain injury. J Neurosurg. 2009;110:1242–6. doi:10.3171/2008.8.JNS08314.
  26. Hanko M, Kolarovszki B, Varga K, et al. Secondary (Duret) brainstem haemorrhage may not always represent a fatal event. Romanian Neurosurgery 2019;33:166–73. doi:10.33962/roneuro-2019-031.
  27. Timofeev I, Czosnyka M, Nortje J, et al. Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation after traumatic brain injury. J Neurosurg. 2008;108:66–73. doi:10.3171/JNS/2008/108/01/0066.
  28. Janatpour ZS, Szuflita NS, Spinelli J, et al. Inadequate decompressive craniectomy following a wartime traumatic brain injury - An illustrative case of why size matters. Mil Med. 2019;pii:usz008. doi:10.1093/milmed/usz008.
  29. Yamakami I, Yamaura A. Effects of decompressive craniectomy on regional cerebral blood flow in severe head trauma patients. Neurol Med Chir. (Tokyo) 1993;33:616–20. doi:10.2176/nmc.33.616.
  30. Csókay A, Együd L, Nagy L, et al. Vascular tunnel creation to improve the efficacy of decompressive craniectomy in post-traumatic cerebral edema and ischemic stroke. Surg Neurol. 2002;57(2):126–9.
  31. Sakamoto S, Eguchi K, Kiura Y et al. CT perfusion imaging in the syndrome of the sinking skin flap before and after cranioplasty. Clin Neurol Neurosurg. 2006;108:583–5. doi:10.1016/j.clineuro.2005.03.012.
  32. Yamaura A, Makino H. Neurological deficits in the presence of the sinking skin flap following decompressive craniectomy. Neurol Med Chir. (Tokyo) 1977;17:43–53. doi:10.2176/nmc.17pt1.43.
  33. Akins PT, Guppy KH. Sinking skin flaps, paradoxical herniation, and external brain tamponade: A review of decompressive craniectomy management. Neurocrit Care. 2008;9:267–76. doi:10.1007/s12028-007-9033-z.
  34. Lilja-Cyron A, Andersen M, Kelsen J, et al. Long-term effect of decompressive craniectomy on intracranial pressure and possible implications for intracranial fluid movements. Neurosurgery 2019;pii:nyz049. doi:10.1093/neuros/nyz049.
  35. Joseph V, Reilly P. Syndrome of the trephined. J Neurosurg. 2009;111:650–2. doi:10.3171/2009.3.JNS0984.
  36. Kim SY, Lee CH, Park IS, et al. Sinking skin flap syndrome after craniectomy in a patient who previously underwent ventriculoperitoneal shunt. Korean J Neurotrauma 2012;8:149–52. doi:10.13004/kjnt.2012.8.2.149.
  37. Isago T, Nozaki M, Kikuchi Y, et al. Sinking skin flap syndrome. A case of improved cerebral blood flow after cranioplasty. Ann Plast Surg. 2004;53:288–92.
  38. Fodstad H, Love JA, Ekstedt J, et al. Effect of cranioplasty on cerebrospinal fluid hydrodynamics in patients with the syndrome of the trephined. Acta Neurochir. (Wien) 1984;70(1–2):21–30.
  39. Grant FC, Norcross NC. Repair of cranial defects by cranioplasty. Ann Surg. 1939;110:488–512.
  40. Mraček J, Choc M, Mraček Z. Osteoplastická dekompresivní kraniotomie. Cesk Slov Neurol N. 2007;103:290–3.
  41. Aarabi B, Chesler D, Maulucci C, et al. Dynamics of subdural hygroma following decompressive craniectomy: a comparative study. Neurosurg Focus 2009;26(6):E8. doi:10.3171/2009.3.FOCUS0947.
  42. Wang HK, Lu K, Liang CL, et al. Contralateral subdural effusion related to decompressive craniectomy performed in patients with severe traumatic brain injury. Injury 2012;43:594–7. doi:10.1016/j.injury.2010.06.004.
  43. De Bonis P, Sturiale CL, Anile C, et al. Decompressive craniectomy, interhemispheric hygroma and hydrocephalus: A timeline of events? Clin Neurol Neurosurg. 2013;115:1308–12. doi:10.1016/j.clineuro.2012.12.011.
  44. Paredes I, Cicuendes M, Delgado MA, et al. Normal pressure subdural hygroma with mass effect as a complication of decompressive craniectomy. Surg Neurol Int. 2011;2:88. doi:10.4103/2152-7806.82370.
  45. Salunke P, Garg R, Kapoor A, et al. Symptomatic contralateral subdural hygromas after decompressive craniectomy: plausible causes and management protocols. J Neurosurg. 2015;122:602–9. doi:10.3171/2014.10.JNS14780.
  46. Feng JF, Jiang JY, Bao YH, et al. Traumatic subdural effusion evolves into chronic subdural hematoma: two stages of the same inflammatory reaction? Med Hypotheses 2008;70:1147–9. doi:10.1016/j.mehy.2007.11.014.
  47. Honeybul S, Ho KM. Incidence and risk factors for post-traumatic hydrocephalus following decompressive craniectomy for intractable intracranial hypertension and evacuation of mass lesions. J Neurotrauma 2012;29:1872–8. doi:10.1089/neu.2012.2356.
  48. Takeuchi S, Takasato Y, Masaoka H, et al. Hydrocephalus following decompressive craniectomy for ischemic stroke. Acta Neurochir Suppl. 2013;118:289–91. doi:10.1007/978-3-7091-1434-6_56.
  49. Takeuchi S, Nawashiro H, Wada K, et al. Ventriculomegaly after decompressive craniectomy with hematoma evacuation for large hemispheric hypertensive intracerebral hemorrhage. Clin Neurol Neurosurg. 2013;115:317–22. doi:10.1016/j.clineuro.2012.05.026.
  50. Vedantam A, Yamal JM, Hwang H, et al. Factors associated with shunt-dependent hydrocephalus after decompressive craniectomy for traumatic brain injury. J Neurosurg. 2018;128:1547–52. doi:10.3171/2017.1.JNS162721.
  51. Wang QP, Ma JP, Zhou ZM, et al. Impact of operation details on hydrocephalus after decompressive craniectomy. Neurosciences (Riyadh) 2016;21:10–16. doi:10.17712/nsj.2016.1.20150543.
  52. Takeuchi S, Nagatani K, Wada K, et al. Is Decompressive craniectomy a risk factor for ventriculomegaly? Acta Neurochir Suppl. 2013;118:281–3. doi:10.1007/978-3-7091-1434-6_54.
  53. Malcolm JG, Rindler RS, Chu JK, et al. Early cranioplasty is associated with greater neurological improvement: a systematic review and meta-analysis. Neurosurgery 2018;82:278–88. doi:10.1093/neuros/nyx182.
  54. Waziri A, Fusco D, Mayer SA, et al. Postoperative hydrocephalus in patients undergoing decompressive hemicraniectomy for ischemic or hemorrhagic stroke. Neurosurgery 2007;61:489–93. doi:10.1227/01.NEU.0000290894.85072.37.
  55. Hasan D, Herve L, Tanghe J. Distribution of cisternal blood in patients with acute hydrocephalus after subarachnoid hemorrhage. Ann Neurol. 1992;31:374–8.
  56. Stiver SI, Wintermark M, Manley GT. Motor trephine syndrome: a mechanistic hypothesis. Acta Neurochir Suppl. 2008;102:273–7. doi:10.1007/978-3-211-85578-2_51
  57. Stiver SI, Wintermark M, Manley GT. Reversible monoparesis following decompressive hemicraniectomy for traumatic brain injury. J Neurosurg. 2008;109:245–54. doi:10.3171/JNS/2008/109/8/0245.
  58. Di Rienzo A, Pangrazi PP, Riccio M. Skin flap complications after decompressive craniectomy and cranioplasty: Proposal of classification and treatment options. Surg Neurol Int. 2016;7(Suppl 28):S737–S745.
  59. Güresir E, Vatter H, Schuss P, et al. Rapid closure technique in decompressive craniectomy. J Neurosurg. 2011;114:954–60. doi:10.3171/2009.12.JNS091065.
  60. Lin C, Zhao X, Sun H. Analysis on the risk factors of intracranial infection secondary to traumatic brain injury. Chin J Traumatol. 2015;18:81–3. doi: 10.1016/j.cjtee.2014.10.007.
  61. Morton R, Lucas 2nd TH, Ko A, et al. Intracerebral abscess associated with the Camino intracranial pressure monitor: case report and review of the literature. Neurosurgery 2012;71:E193–8. doi:10.1227/NEU.0b013e318232e250.
  62. Malliti M, page P, Gury C, et al. Comparison of deep wound infection rates using a synthetic dural substitute (neuro-patch) or pericranium graft for dural closure: a clinical review of 1 year. Neurosurgery 2004;54:599–603; discussion 603–4. doi:10.1227/01.neu.0000108640.45371.1a.
  63. Zunt JR : Infections of the central nervous system in the neurosurgical patient. Hand­book of Clinical Neurology 2010;96:125–41. doi:10.1016/S0072-9752(09)96009-2.
  64. Amir A, Gatot A, Zucker G, et al. Harvesting large fascia lata sheaths. A rational approach. Skull Base Surg. 2000;10(1):29–34.
  65. Kohanna FH, Adams PX, Cunningham JN Jr., et al. Use of autologous fascia lata as a pericardial substitute following open-heart surgery. J Thorac Cardiovasc Surg. 1977;74:14–9.
  66. Yasuda CL, Costa AL, Franca M Jr., et al. Post­craniotomy temporalis muscle atrophy: a clinical, magnetic resonance imaging volumetry and electromyographic investigation. J Orofac Pain 2010;24:391–7.
  67. Missori P, Paolini S, Ciapetta P, et al. Preservation of the temporal muscle during the frontotemporoparietal approach for decompressive craniectomy: technical note. Acta Neurochir. (Wien) 2013;155:1335–9. doi:10.1007/s00701-013-1695-z.
  68. Bulters D, Belli A. Placement of silicone sheeting at decompressive craniectomy to prevent adhesions at cranioplasty. Br J Neurosurg. 2010;24:75–6. doi:10.3109/02688690903506135.
  69. Kawaguchi T, Hosoda K, Shibata Y, et al. Expanded polytetrafluoroethylene membrane for prevention of adhesions in patients undergoing external decompression and subsequent cranioplasty. Neurol Med Chir. (Tokyo) 2003;43:320–3.
  70. Honeybul S. Decompressive craniectomy: a new complication. J Clin Neurosci. 2009;16:727–9. doi:10.1016/j.jocn.2008.06.015.
  71. Chen W, Li MD, Wang GF, et al. Risk of post-traumatic epilepsy after severe head injury in patients with at least one seizure. Neuropsychiatr Dis Treat. 2017;13:2301–6. doi:10.2147/NDT.S141486.
  72. Frey LC. Epidemiology of posttraumatic epilepsy: A critical review. Epilepsia 2003;44(S10):11–17. doi:10.1046/ j.1528-1157.44.s10.4.x.
  73. Santamarina E, Sueiras M, Toledo M, et al. Epilepsy in patients with malignant middle cerebral artery infarcts and decompressive craniectomies. Epilepsy Res. 2015;112:130–6. doi:10.1016/j.eplepsyres.2015.02.016.
  74. Mraček J, Mraček Z, Choc M. Poznámky k operační taktice a technice dekompresivní kraniotomie – přehledný referát. Rozhl Chir. 2007;86:217–23.
  75. Hutchinson PJ, Kolias AG, Tajsic T, et al. Consensus statement from the international consensus meeting on the role of decompressive craniectomy in the management of traumatic brain injury. Acta Neurochir. (Wien) 2019; 161:1261–74. doi: 10.1007/s00701-019-03936-y.
  76. Navrátil L. Dekompresivní kraniotomie u kraniocerebrálních poranění – hodnocení přežití a jeho kvality po jednom roce od úrazu. Cesk Slov Neurol N. 2007;103:294–301.
  77. Picetti E, Caspani ML, Iaccarino C, et al. Intracranial pressure monitoring after primary decompressive craniectomy in traumatic brain injury: a clinical study. Acta Neurochir. (Wien) 2017;159(4):615–22. doi: 10.1007/s00701-017-3118-z.
Labels
Surgery Orthopaedics Trauma surgery
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#