#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Current view on prostheses in herniology (hernia meshes) – classifications, indications, advantages and disadvantages of different implants, complications J. Skach, M. Slamborova, V. Blecher, P. Hromadka, R. Gurlich


Authors: J. Škach 1;  M. Šlamborová 2;  V. Blecher 1;  P. Hromádka 1;  R. Gürlich 3
Published in: Rozhl. Chir., 2019, roč. 98, č. 3, s. 85-99.
Category: Review

Overview

Hernia repair is one of the most commonly performed surgical procedures worldwide. Reinforcement of the tissue with a surgical mesh requires the implantation of much over 1 million meshes per year worldwide. Implant design remains a critical challenge for the prevention of hernia recurrence. Currently available implants exhibit a wide spectrum of different characteristics. This review summarizes the specifics, advantages, limitations, complications and functionalities of commonly accessible prostheses. There is still no ideal mesh for every surgery.

Keywords:

Hernia – mesh – repair – Biocompatibility


Sources
  1. Schumpelick V, Nylus L. Meshes: benefits and risks. Springer, Berlin 2003.
  2. Shankaran V, Weber DL, Reed RL, et al. A review of available prosthetics for ventral hernia repair. Ann Surg. 2011;253:16−24.
  3. LeBlanc KA. Prosthetic biomaterials for hernioplasty In: LeBlanc KA. Laparoscopic hernia surgery: An operative guide. London, NY 2003.
  4. Bilsel Y, Abci I. The search for ideal hernia repair; mesh materials and types. International Journal of Surgery 2012;10:317–21.
  5. Consensus conference. Clinical applications of biomaterials. JAMA 1984;249:1050.
  6. Kalaba S, Gerhard E, Winder JS, et al. Design strategies and applications of biomaterials and devices for hernia repair. Bioactive Materials 2016;1:2−17.
  7. Amid PK. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1997;1:15.
  8. Coda A, Lamberti R, Martorana S. Classification of prosthetics used in hernia repair based on weight and biomaterial. Hernia 2012; 16:9−20.
  9. Bryan N, Battersby C, Smart N, et al. A review of biocompatibility in hernia repair; considerations in vitro and in vivo for selecting the most appropriate repair material. Hernia 2015;19:169−78.
  10. Klinge U, Klosterhalfen B. Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia 2012;16:251−8.
  11. Sanbhal N, Miao L, Xu R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: A review. Journal of Industrial Textiles 2017:1−28.
  12. Baylon K, Camarillo PR, Zuniga AE, et al. Past, present and future of surgical meshes: A review. Membranes 2017;7:47.
  13. Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29:2941−53.
  14. Rastegarpour A, Cheung M, Vardhan M, et al. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design. Plast Surg 2016;1:41−50.
  15. Bellon JM, Contreras LA, Pascual G, et al. Evaluation of the acute scarring response to the implant of different types of biomaterial in the abdominal wall. J Mater Sci Mater Med 2000;11:25−9.
  16. King MW, Soares BM, Guidoin R. The chemical, physical and structural properties of synthetic biomaterials used in hernia repair. In: Bendavin R. (ed) Prostheses and abdominal wall hernias. Landes, Austin 1994; 191−206.
  17. Agarwal BB, Agarwal KA, Mahajn KC. Prospective double-blind randomized controlled study comparing heavy- and lightweight polypropylene mesh in totally extraperitoneal repair of inguinal hernia: early results. Surg Endosc 2009;23:242−7.
  18. Miao L, Wang F, Wang L. et al. Physical characteristics of medical textile prostheses designes for hernia repair: A comprehensive analysis of select commercial devices. Materials 2015;8:8148−68. doi: 10.3390/ma8125453.
  19. Deeken CR, Abdo MS, Frisella MM, et al. Physicomechanical evaluation of polypropylen, polyester, and polytetrafluorethylene meshes for inguinal hernia repair. J Am Coll Surg. 2011;212:68−79.
  20. Anurov MV, Titkova SM, Oettinger AP. Biochemical compatibility of surgical mesh and fascia being reinforced: dependence of experimental hernia defect repair results on anisotropi surgical mesh positioning. Hernia 2012;16:199−210.
  21. Saberski ER, Orenstein SB, Novitsky YW. Anisotropic evaluation of synthetic surgical meshes. Hernia 2011;15:47−52.
  22. Hiles M, Ritchie RD, Altizer AM. Are biologic grafts effective for hernia repair? A systematic review of the literature. Surg Innov 2009;16:26−37.
  23. Carter PR, LeBlanc KA, Hausmann MG, et al. Does expanded polytetrafluoroethylene mesh really shrink after laparoscopic ventral hernia repair? Hernia 2012;16321−5.
  24. Trabuco EC, Gebhart JB. Reconstructive materials used in surgery: Classification and host response. UpToDate 2017.
  25. Usher FC, Fries JG, Ochsner JL, et al. Marlex mesh, a new plastic mesh for replacing tissue defects. II. Clinical studies. AMA Arch Surg. 1959;78:138−45.
  26. Usher FC, Gannon JP. Marlex mesh, a new plastic mesh for replacing tissue defects. I. Experimental studies. AMA Arch Surg 1959;78:131−7.
  27. Brown CN, Finch JG. Which mesh for hernia repair? Ann R Coll Surg Engl 2010;92:272−8.
  28. Hodde J, Hiles M. Constructive soft tissue remodeling with a biologic extracellular matrix graft: overview and review of the clinical literature. Acta Chir Belg 2007;107:641−7.
  29. Gonzales R, Rodeheaver GT, Moody DL, et al. Reisistance to adhesion formation: a comparative study of treated and untreated mesh products placed in the abdominal cavity. Hernia 2004;8:213−9.
  30. Bellon JM, Garcia-Honduvilla N, Lopez R, et al. In vitro mesothelialization of prosthetic materials designed for the repair of abdominal wall defects. J Mater Sci Mater Med 2003;14:359−64.
  31. Ramakrishna HK, Lakshman K. Intraperitoneal polypropylene mesh and newer meshes in ventral hernia repair: What EBM says? Indian J Surg 2013;5:346−51.
  32. Deeken CR, Faucher KM, Matthews BD. A review of the composition, characteristics, and effectiveness of barrier mesh prostheses utilized for laparoscopic ventral hernia repair. Surg Endosc 2012;26:566−75.
  33. Guillame O, Teuschl AH, Gruber-Blum S, et al. Emerging trends in abdominal wall reinforcement: Bringing bio-functionality to meshes. Adv Healthcare Mater 2015;4:1763−89.
  34. Fitzgerald JF, Kumar AS. Biologic versus synthetic mesh reinforcement: What are the pros and cons? Clin Colon Rectal Surg 2014;27:140−8.
  35. Plencner M, East B, Tonar Z, et al. Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-epsilon-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int J Nanomed 2014;9:3263−77.
  36. Labay C, Canal JM, Modic M, et al. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials 2015;71:132−44.
  37. Cohen MS, Stern JM, Vanni AJ, et al. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surgical Infections 2007;8:397−403.
  38. Mancino AT, Lalani T. Wound infection following repair of abdominal wall hernia. UpToDate 2017.
  39. Falagas ME, Kasiakou SK. Mesh-related infections after hernia repair surgery. Clin Microbiol Infect 2005;11:3−8.
  40. Narkhede R, Shah NM, Dalal PR, et al. Postoperative mesh infection – Still a concern in laparoscopic era. Indian J Surg 2015;4:322−6.
  41. Choi JJ, Palaniappa NC, Dallas KB, et al. Use of mesh during ventral hernia repair in clean-contaminated and contaminated cases: outcomes of 33.832 cases. Ann Surg 2012;255:176−80.
  42. Perez-Kohler B, Bayon Y, Bellon JM. Mesh infection and hernia repair: a review. Surgical Infections 2016;10:1−14.
  43. Cevasco M, Itani KMF. Ventral hernia repair with synthetic, composite and biologic mesh: characteristics, indications and infection profile. Surgical Infections 2012;13:209−15.
  44. Aydinuraz K, Agalar C, Agalar F, et al. In vitro S.epidermidis and S.aureus adherence to composite and lightweight polypropylene grafts. Journal of Surgical Research 2009;157:e79−e86.
  45. Belyansky I, Tsirline VB, Montero PN, et al. Lysostaphin-coated mesh prevents staphylococcal infection and significantly improves survival in a contaminated surgical field. The American Surgeon 2011;8:1025−31.
  46. Biondo SML, Calvalho LB, Conceicao LT, et al. Comparative study of polypropylene versus Parietex composite®, Vicryl® and Ultrapro® meshes, regarding the formation of intraperitoneal adhesions. Acta Cir Bras 2017;32:98−104.
  47. Škach J, Harcubová R, Petráková V, et al. Program monstrózních kýl v Kýlním centru Liberec. Rozhl Chir 2016;5:177−87.
  48. Strašlipka J, Mrázek M, Ludvík P. Plastika tříselné kýly „tension free“ metodou s využitím síťky CHS 100 – naše zkušenosti. Rozhl chir 2008;2:87−8.
  49. Martínek L, Dostalík J, Guňková P, et al. Prevence parastomální hernie primoimplantací síťky laparoskopicky – první zkušenosti. Rozhl Chir 2012;4:216−8.
  50. Šimánek V, Třeška V, Špidlen V, et al. Plastika tříselné kýly otevřenou metodou, porovnání různých technik – pilotní studie. Rozhl Chir 2005;12:595−8.
  51. Kohoutek L, Musil J, Plecháčová P, et al. Operace tříselné kýly technikou ONSTEP. Rozhl  Chir 2015;4:152−5.
  52. Marešová P, Peteja M, Lerch M, et al. Costs of inguinal hernia repair associated with using different medical devices in the Czech Republic. Therapeutics and Clinical Risk Management 2016;12:1593−7.
Labels
Surgery Orthopaedics Trauma surgery
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#